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Abstract

Deep learning models are intrinsically sensitive to distribu-
tion shifts in the input data. In particular, small, barely per-
ceivable perturbations to the input data can force models
to make wrong predictions with high confidence. An com-
mon defense mechanism is regularization through adver-
sarial training which injects worst-case perturbations back
into training to strengthen the decision boundaries, and to
reduce overfitting. In this context, we perform an investiga-
tion of 3 × 3 convolution filters that form in adversarially-
trained models. Filters are extracted from 71 public mod-
els of the ℓ∞-RobustBench CIFAR-10/100 and ImageNet1k
leaderboard and compared to filters extracted from models
built on the same architectures but trained without robust
regularization. We observe that adversarially-robust mod-
els appear to form more diverse, less sparse, and more or-
thogonal convolution filters than their normal counterparts.
The largest differences between robust and normal models
are found in the deepest layers, and the very first convolu-
tion layer, which consistently and predominantly forms fil-
ters that can partially eliminate perturbations, irrespective
of the architecture.
Data & Project website:
https : / / github . com / paulgavrikov /
cvpr22w_RobustnessThroughTheLens

1. Introduction
Convolutional Neural Networks (CNNs) have been success-
fully applied to solve many different computer vision prob-
lems. As the state of the art has been consequently pushed,
research was mostly devoted at improving the performance
(validation accuracy, along speed and others). However, re-
cently it has been shown that these models are sensitive to
distribution shifts in image data. Even small, for humans
almost imperceptible, perturbations applied to input images
can force the networks to make high-confidence, false pre-
dictions on samples that would otherwise have been classi-
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Figure 1. Filter structure divergence between learned 3 × 3 filter
structures of robust and normal models by depth decile. The first
convolutional layer is displayed separately. The most significant
shifts (large KL values) appear in the primary convolution layer
and deeper stages.

fied correctly [1, 2]. Normal training on off-the-shelf archi-
tectures typically results in zero validation accuracy against
perturbed samples. This raises the question on whether cur-
rent deep learning models should be used in safety-critical
applications [3–5]. Consequently, researchers have devoted
their work on studying the sensitivity to distribution shifts
e.g. by finding and understanding adversarial inputs [6, 7],
and building defenses to those [8–11]. While most ex-
planatory methods study the distribution shifts in the input
data and activations, we propose to evaluate differences in
learned convolutional filters and, therefore, round out pre-
vious findings through a different perspective. More specif-
ically, we investigate shifts in the dominantly used 3×3 fil-
ters in CNN classification models trained on CIFAR-10/100
[12] and ImageNet1k [13] datasets that were trained to with-
stand ℓ∞-bound adversarial attacks. However, we believe
that our results also apply to other tasks, datasets, and per-
haps even to other attack vectors. We summarize our key
contributions and findings as follows:

• We collect 71 public robust models with 13 different ar-



chitectures trained on 3 image datasets. These models
contain a total of 615,863,744 filters with a size of 3× 3.
Additionally, the therein used architectures are trained
from scratch without the employed robustness regulariza-
tions.

• We show an in depth empirical comparison of learned
3× 3 convolution filters between robust and normal mod-
els. The resulting filter dataset is made available pub-
licly [14].

• Our analysis shows that differences in filter structure in-
crease with layer depth, but significantly explode towards
the end of the model, with a dominant outlier showing in
the primary convolution layer.

• We visualize the primary layer of robust models and its
activations, and observe a large presence of thresholding-
filters that can remove perturbations from regions of in-
terest.

• We discover that robust models appear to form more di-
verse, less sparse, and more orthogonal convolution fil-
ters.

2. Related Work
Adversarial attacks and defenses. Let F denote a model
parameterized by θ, x an input sample with the correspond-
ing class label y, and L the loss function. Adversarial at-
tacks attempt to maximize the loss L by finding an additive
perturbation to an input sample x′ in the Bϵ(x) ball that is
centered at x with a radius of ϵ. ∥ · ∥p depicts the ℓp-norm
with usually p = 2 or ∞.

max
x′∈Bϵ(x)

L (F (x′; θ) , y)

Bϵ(x) = {x′ : ∥x− x′∥p ≤ ϵ}
(1)

On the other hand, to achieve robustness, the loss caused
by the perturbation has to be mitigated by finding more
suitable set of model parameters θ. One of the most
successful approaches is seen in adversarial training [10]
where adversarial perturbations are found and reintroduced
into training, alongside with the inclusion of external
data [15].

Robustness evaluation. A common framework for adver-
sarial robustness benchmarks is RobustBench [16]. The
framework applies APGDce, APGDt [10, 17], FAB [18],
and Square [19] attacks via AutoAttack [17] to obtain
a comparable robustness accuracy. Perturbations are
obtained from Bϵ with p = 2, ϵ = 0.5 on CIFAR-10,
as well as p = ∞, ϵ = 8/255 on CIFAR-10/100, and
p = ∞, ϵ = 4/255 on ImageNet1k, respectively. This
methodology was questioned more recently, as the estab-
lished ϵ-thresholds are disputed as being too large and
generate perturbations that can easily be detected [20].

Filter analysis. Yosinski et. al. [21] studied filters of
ImageNet1k CNN classification models and concluded
that early vision layers will form similar features, namely
Gabor-filters and color-blobs, independent of task or
dataset. On the other hand, deeper layers will capture
specifics of the dataset by forming increasingly specialized
filters. A thorough analysis of filters limited to a specific
InceptionV1 [22] model trained on ImageNet1k was pre-
sented in [23–31]. The authors back Yosinski et. al. and
even go beyond by arguing that models are not only form-
ing similar filters, but also connections (i.e. consecutive
transformations). As model capacity increased, little to no
research was devoted to understanding learned filters. More
recently, we presented an empirical analysis of 1.4B filters
obtained from models with different architectures, datasets,
and training tasks [32]. We also introduced a PCA-based
method to compare the structure of learned filters, along-
side two metrics to evaluate their quality (sparsity and
variance entropy). Our findings showed that learned filter
distributions remain largely similar across various splits,
but many models show a large ration of degradation in
filters. Within our study, we also briefly touched up on
filter quality in robust models on ImageNet1k and noticed
that robust models form more diverse filters than their
non-robust counterparts. The presented study builds on top
of this previous work, and explores differences specifically
focused at the robustness aspect and with significantly
more details. Instead of comparing robust models to a
large collection of various ImageNet1k-classifiers, we
compare differences to the same architectures trained
without robustness regularization to allow for a less biased
analysis. Additionally, we extend our analysis to other
datasets, refine previous quality metrics, and evaluate a
new metric to capture the orthogonality of filterbanks.
Regarding robust filter analysis, we observe that models
trained for ℓ∞ robustness form thresholding filters in early
vision which are able to remove perturbations.

Connection to other model analysis. [33] presented the
Lottery Ticket Hypothesis, which claims that CNNs form
various redundant subnetworks that each increase the odds
of finding a solution. Once a solution was found, the “loos-
ing” subnetworks can be removed without any significant
impacts on accuracy. Upon that, [34] observed that ad-
versarial samples activate channels of the feature extractor
more uniformly, and with larger magnitudes, and propose
to suppress channels to increase robustness. Instead of sup-
pressing channels, [35] showed that enhancing subnetworks
can boost robustness to adversarial perturbations. [36] argue
that adversarially-trained networks transfer better as they
form richer representations. We hypothesize that these find-
ings correlate with filter quality and believe that degener-
ated filters are the “loosing” subnetworks, that are activated
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(c) Filters from normal models.

Figure 2. Filter basis and (cumulative) explained variance ra-
tio per component (below) for filters from (a) all models, (b)
adversarially-robust models, (c) normal models. Basis vectors are
sorted by decreasing variance.

by adversarial attacks. Improving the filter quality, in the-
ory, should be a necessary, but not sufficient criterion to
achieve robustness.

3. Methods
For the following sections, let W (i) ∈ Rcout×cin×k1×k2 be
the layer weight of the i-th convolution layer with cin input-
channels, cout output-channels, and F ∈ W (i) being a filter
with shape k1 × k2 (here: k1 = k2 = 3). For the fol-
lowing methods we reshape the layer weights into matrices
that represent stacks of n = cout × cin flattened convolution
filters:

W (i) ∈ Rcout×cin×k1×k2 → W (i) ∈ Rn×(k1·k2) (2)

Comparing filter structure. As in [32] we perform a prin-
cipal component analysis (PCA) via singular-value decom-
position (SVD) [37] to understand the filter structure. In this
work, however, we aim at reducing the previously hefty im-
pact of sparse filters, by removing them from layer weights
(for details see the next paragraph). Then we normalize
each filter F ∈ W (i) individually to F ′:

di = max
i,j

|F ij |

F ′
ij =

{
F ij/di, if di ̸= 0

F ij , else

(3)

The resulting layer weight matrix is centered and decom-
posed via SVD into a n× k1 · k2 rotation matrix U , a
k1·k2×k1·k2 diagonal scaling matrix Σ, and a k1·k2×k1·k2
rotation matrix V T . The diagonal entries σi, i = 0, . . . , n−
1 of Σ form the singular values in decreasing order of their
explained variance. The row vectors vi, i = 0, . . . , k1·k2−1

in V T are called principal components/basis vectors. Every
row vector cij , j = 0, . . . , k1 · k2 − 1 in U is the coefficient
vector for F ′

i .

W − W̄ = UΣV T (4)

Where W̄ denotes the vector of column-wise mean values
of any matrix W . We can then measure the explained vari-
ance ratio â of each principal component.

a = (ΣI)2/(n− 1)

â = a/∥a∥1
(5)

The sum of principal components vi weighted by the co-
efficients ci allows to reconstruct every scaled filter F ′ ∈
W (i).

F ′ =
∑
i

civi + W̄ i (6)

Measuring layer quality. A static measurement of the
layer quality (meaning by only using learned parameters)
can be obtained by measuring the ratio of filters where all
weights are near-zero (sparsity) as these filters do not con-
tribute to the feature maps due to their low magnitudes.
We apply the criterion presented in [32] and call a filter
F ∈ W (i) sparse if max |F | ≤ max |W (i)|/100. The
ratio is then defined by:

|{F |F ∈ W (i) ∧ (∀x ∈ F : −ϵ0 ≤ x ≤ ϵ0)}|/n (7)

Additionally, it is possible to quantify the diversity of filter
structure in a given layer. We fit the PCA to individual layer
weights W (i) without normalization of filters and again re-
move sparse filters. The diversity can be then estimated by
the non-negative log10 entropy of the explained variance of
each basis vector H(â) (variance entropy) [32].

H(X ) =
∑
x∈X

x log10 x (8)

An entropy variance value of H([1, 0, · · · , 0]) = 0 indicates
a homogeneity of present filters, while the maximum H(1)
(here: 0.954) indicates a uniformly spread variance across
all basis vectors, as found in random, non-initialized layers
[32]. Values close to both edges indicate a degeneration.
Additionally, orthogonality is a desirable property in con-
volutional weights [38, 39], as it helps with gradient prop-
agation and is directly coupled with diversity of generated
feature maps. Due to computational limits we measure the
orthogonality between filterbanks (i.e. stacks of cin filters)
instead of individual filters. The filterbanks are normalized
to unit-length.

1− ∥W (i)(W (i))T − I∥1
cout · (cout − 1)

(9)



Normal Robust

Dataset 3× 3 Fil-
ters [M]

Clean
Acc.

Clean
Acc.

Robust
Acc.

cifar10 9.1±10.5 92.2±4.2 86.9±2.6 56.7±5.9
cifar100 9.3±10.6 72.7±8.5 62.2±3.9 29.0±3.9
imnet 2.0± 1.7 78.5±4.9 60.7±6.3 30.8±5.6

Table 1. Comparison between average (and std) performance and
parameter size on all evaluated datasets. Clean Acc. refers to the
regular validation accuracy, while Robust Acc. refers to the robust
accuracy as measured by RobustBench.

An orthogonality value of 1 stipulates the orthogonality of
all filterbanks in a layer, whereas 0 indicates parallel filter-
banks that produce perhaps differently scaled but otherwise
identical feature maps.
Quantifying distribution shifts. We quantify distribu-
tion shifts between two distributions P,Q by a symmet-
ric, non-negative variant of KL-divergence [40]. For multi-
dimensional distributions we compute the divergence on
each axis i and sum it weighted them by a factor wi:∑

i

wi

∑
x∈X

Pi(x) log
Pi(x)

Qi(x)
+Qi(x) log

Qi(x)

Pi(x)
(10)

Models. We collected 71 robust model checkpoints [15,41–
69] from the ℓ∞-RobustBench leaderboard [16]. Addition-
ally, for each appearing architecture we trained an individ-
ual model, without any specific robustness regularization,
and without any external data (even if the robust counter-
part relied on it). Training ImageNet1k architectures with
these parameters resulted in rather poor performance and
we replaced these models with pretrained ImageNet1k mod-
els included from the timm-library [70].

4. Results
4.1. Filter basis

In a first step, we investigate the basis forming the obtained
filters. We therefore separate the filters extracted from all
models into three filter sets: all filters, only filters from ro-
bust models, and only filters from normal models. Then we
apply the filter structure measurement to each set individu-
ally.
We observe that the basis-vectors obtained from all three
sets do not significantly differ (Fig. 2). Changes only in-
clude minor fluctuations (note that basis vectors can be in-
verted which is equivalent with inverting the coefficients).
However, while 67% of the normal filter variance can be re-
constructed from the first basis vector alone, robust models
show a more uniform distribution of the variance, suggest-
ing that these models form more structurally diverse filters.

4.2. Filter structure

In this section we aim at understanding the differences in
the filter structure. For this, we compute a common basis
consisting of all collected filters and measure shifts between
coefficients separated by dataset and regularization. We
weigh the distributions by the explained variance ratio of
the respective axis.

Coefficient shifts by dataset. The coefficient distributions
(Fig. 3) show clear shifts between robust and normal
models, but this shift decreases with increasing complexity
of the dataset. We obtain a weighted KL-divergence of
0.55, 0.16, and 0.01 for CIFAR-10/100, and ImageNet1k
respectively. Interestingly, we also see a reduced drift
for CIFAR-100 compared to CIFAR-10, although it has
the same amount of training samples but more classes.
This suggests that more complex datasets lead to smaller
distribution shifts between robust and normal models, with
an emphasis on the fact that complexity does not only refer
to the amount of input training data. It is worth noting
that robust models achieve a significantly worse clean
accuracy than their counterparts and this performance gap
increases with dataset complexity (Tab. 1). On average,
robust accuracy is an additionally 30% worse for all studied
datasets. And ImageNet1k models are evaluated with a
different ϵ, which may hide their true (non)-robustness.
Additionally, the studied ImageNet1k models on average
only employ 2M 3 × 3 filters (plus a negligible amount of
larger filters), while the models on the arguably simpler
datasets employ 9M on average. It is therefore likely, that
CIFAR-10/100 shows an increased effect of degeneration,
and, that ImageNet1k pairs similarity is due to smaller
architectures, and lesser robustness performance, rather
than intrinsic similarity.

Coefficient shifts by depth. Following the previous ob-
servation, we investigate the most significant shifts in filter
coefficients and measure the divergence at various stages of
depth. To compare models with different depths, we group
filter coefficients in deciles of their relative depth in the
model. The obtained shifts (Fig. 1) seem to increase with
convolution depth and peak in the last 20% of the depth for
CIFAR-10/100. For ImageNet1k the peak shift is measured
in the 8th decile, whereas the shift in later stages is mini-
mal. Aside of the shifts in later stages, for all datasets, there
is relatively low shift throughout the depth with the most
salient outlier being seen in the very first convolution layer.1

This outlier is indeed limited to the first layer, adding filters
from the secondary layers vanishes the shift. Once again the
maximum shift appears to decrease with dataset complexity.

1The primary convolution stage in ImageNet1k-models use a larger
kernel-size and is therefore not included in this study, yet we expect similar
observations there.
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Figure 3. Coefficient distribution along every basis of robust (adversarially-trained) vs. normal models on different datasets. Shifts between
robust and normal models appear to decrease with dataset complexity.

(a) Adversarial training.

(b) Normal training.

Figure 4. Full set of first stage convolution filters of a WideResNet-
34-10 trained with (a) adversarial training as provided by [65] on
CIFAR-10 and (b) normal training.

(a) Adversarial training.

(b) Normal training.

Figure 5. Randomly selected convolution filters of the last con-
volution layer in a WideResNet-34-10 trained with (a) adversarial
training as provided by [65] on CIFAR-10 and (b) normal training.

First and last convolution layer. To better understand the
cause of the observed distribution shifts we visualize the
first and last convolution layers. The primary convolution
stage (Fig. 4) shows a striking difference: Normal models
show an expected [21] diverse set of various filters, yet, al-
most all robust models develop a large presence of filters
performing a weighted summation of the input channels
(as 1 × 1 convolutions would do). We hypothesize that in
combination with the common ReLU-activations (and their
derivatives) these filters perform a thresholding of the input
data which can eliminate small perturbations. Indeed, plot-
ting the difference in activations for natural and perturbed
samples ( Fig. 6), allows us to obtain visual confirmation
that these filters are successful in removing perturbations
from various regions of interest (ROI), e.g. from the cat,
background, foreground. For the deepest convolution lay-
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Figure 6. Activations generated by (randomly selected)
thresholding-filterbanks (top) in the primary convolution stage of
a robust WideResNet-34-10 by [65]. The first row shows the
thresholding-filters. The second row shows the activations of each
filter for an input sample, and the same sample with perturbations,
respectively. Finally, the last row shows the difference in activa-
tions: perturbations (red, blue) are removed from ROIs (white).

ers (Fig. 5) we observe the opposite: normal filters show a
clear lack of diversity, and mostly remind of gaussian blur
filters, while adversarially-trained filters appear to be richer
in structure and are more likely to perform complex trans-
formations. Contrary to the distinct primary layer, this ob-
servation is visible across multiple deeper layers.

4.3. Filter quality

While the prevenient analysis focused on distribution shifts
in filter structure this section focuses on the related quality
aspect of filters. In particular, we measure the amount
of contributing filters through sparsity; the diversity of
filters through variance entropy; and the redundancy of
filterbanks through orthogonality. Similarly to the findings
in structure, we observe fewer differences in quality with
dataset complexity (Fig. 7), but also a general increase in
quality for both robust and normal models. The results
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Figure 7. Distribution of filter quality comparison by depth measured via sparsity (top), variance entropy (center), and orthogonality
(bottom) between normal and adversarial-training for CIFAR-10 (left), CIFAR-100 (center), ImageNet1k (right) datasets.

on ImageNet1k are less conclusive due to a near-optimal
baseline and a low sample size.

Sparsity. We observe a very high span of sparsity across
all layers for normal models that decreases with dataset
complexity. Robust training significantly further minimizes
sparsity and it’s span across all depths. Notable outliers in-
clude the primary stages, as well as the deepest convolution
layers for CIFAR-10. Generally, sparsity seems to be lower
in middle-stages.

Variance entropy. The average variance entropy is
relatively constant throughout the model but decreases
with deeper layers. The entropy of robust models starts
to decrease later and less significantly but the difference
between diminishes with dataset complexity. Compared
to CIFAR-10, robust CIFAR-100 models shows a lower
entropy in deeper layers, while there is no clear difference
between normal models. ImageNet1k models show a higher
entropy across all depths.

Orthogonality. Robust models show an almost mono-
tonic increase in orthogonality with depth, except for the
last decile, whereas normal models eventually begin to de-

crease in orthogonality. Again the differences diminish with
dataset complexity and the span in obtained measurements
of non-robust models is crucially increased.

5. Conclusion
Adversarially-trained models appear to learn a particularly
more diverse, less redundant, and less sparse set of con-
volution filters than their non-regularized variants do. We
assume that the increase in quality is a response to the ad-
ditional training strain, as the more challenging adversar-
ial problem occupies more of the available model capacity
that would otherwise be degenerated. We observe a similar
effect during normal training with increasing dataset com-
plexity. However, although the filter quality of normally
trained ImageNet1k models is exceptionally high, their ro-
bustness is not. So, filter quality alone is not a sufficient
criterion to establish robustness. We end with the following
currently unanswered questions: Is dataset complexity the
cause for lower quality shifts, or, is the difference we mea-
sure merely a side effect of heavily overparameterized ar-
chitectures in which adversarial training can close the gap
to more complex datasets? If not, can we increase robust-
ness by filter quality regularization during training?
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