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Abstract

Hundreds of defenses have been proposed in the past
years to make deep neural networks robust against minimal
(adversarial) input perturbations. However, only a hand-
ful of these could hold up their claims because correctly
evaluating robustness is extremely challenging: Weak at-
tacks often fail to find adversarial examples even if they un-
knowingly exist, thereby making a vulnerable network look
robust. In this paper, we propose a test to identify weak
attacks. Our test introduces a small and simple modifica-
tion into a neural network that guarantees the existence of
an adversarial example for every sample. Consequentially,
any correct attack must succeed in attacking this modified
network. For eleven out of thirteen previously-published
defenses, the original evaluation of the defense fails our
test, while stronger attacks that break these defenses pass
it. We hope that attack unit tests such as ours will be a
major component in future robustness evaluations and in-
crease confidence in an empirical field that today is rid-
dled with skepticism and disbelief. Online version & Code:
zimmerrol.github.io/active-tests/

1. Introduction
Suppose that someone presents you with a purported

proof that P 6=NP. The proof is long, complicated, and dif-
ficult to follow. How would you go about checking if this
proof is correct?

One cumbersome way would be to directly refute the
proof’s claim, e.g., to demonstrate that actually P=NP by
designing an algorithm that solves 3-SAT in polynomial
time. While this would definitely refute the proof, it is likely
orders of magnitude more difficult than simply showing the
proof is incorrect. Accordingly, researchers typically refute
incorrect proofs by studying proofs line-by-line, until they
identify some major flaw in the reasoning.

We argue a similar approach should be taken when eval-
uating adversarial example defenses. Evaluating defenses
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to adversarial examples has proven to be extremely diffi-
cult [9]. In many areas of machine learning, evaluating
the performance of a new technique is often trivial — for
example by computing accuracy on some held-out test set.
However evaluating defense robustness necessarily involves
reasoning over all possible adversaries, and showing none
can succeed. That is, a defense evaluation aims to prove
that something is impossible. As a result, despite signifi-
cant evaluation effort, most published defenses are quickly
broken by stronger attacks [3, 9, 11, 14, 38].

This paper argues for viewing defense proposals as
theorem statements, and the corresponding evaluations as
proofs. The purpose of a defense evaluation, then, is to pro-
vide a convincing and rigorous argument that the defense
is correct. Currently, for an adversary to claim to have a
“break” of a defense, it is necessary to actually produce the
adversarial examples that cause the model to make an error
— analogous to refuting a complexity-theoretic impossibil-
ity result by producing an efficient algorithm. We argue that
this is not how things should work. A valid refutation of a
theorem would be to say “there is a flaw in your proof on
line 9”. Because the null hypothesis for a theorem is that it
is false, just as the null hypothesis for a defense should be
that it is not robust.

Unfortunately, for defenses against adversarial exam-
ples, outside of studying the actual code used to implement
the attack, there are relatively few opportunities to identify
flawed evaluations by reading the paper. As a result, the
current state-of-the-art in identifying flawed evaluations is
to look for artifacts that indicate something has gone wrong
— for example, that the attack fails even when it is allowed
to construct unbounded perturbations) [9].

We develop a new active robustness test to complement
existing (passive) tests [9, 26]. Our test designs a new task
that is solvable by any sufficiently strong attack. Our test
purposefully injects adversarial examples into a defense and
then checks if the attack used to evaluate the defense is able
to find them. If the attack fails this test, we know that it is
too weak to distinguish between a robust and a non-robust
defense, and thus the evaluation should not be trusted.

Our test would have potentially identified eleven out of
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Figure 1. A: Reasons for seemingly high robustness. There are two reason an attack might not find an adversarial example. Either the
classifier is robust or the attack is too weak and it could not find the existing adversarials. In our proposed Binarization Test we pose a
new binary classification problem based on the original classifier such that adversarial examples always exist. Thus, if the attack does not
find an adversarial example it follows that the attack is too weak. B: Setup of the Binarization Test. We construct a binary classification
problem around a clean example such that there exists a valid “adversarial” example within the feasible set of the attack’s threat model.
Based on the original classifier’s features, we create a new binary classifier whose robustness can be evaluated with the same evaluation
function as used for the original classifier.

thirteen flawed evaluations found in previously-published
papers. We hope that our testing methodology can become
a standard component of future defense evaluations. To this
end, defenses with exceptionally novel or different tech-
niques, training algorithms, or architectures, may need to
develop their own tailored version of our active unit test, in
order to ensure the correctness of the defense evaluation.

2. Background
Adversarial Examples Adversarial examples contain
imperceptible perturbations that change the decision of a
deep neural network in arbitrary directions [4, 37]. Since
they can manipulate the behavior of a model, they are seen
as a security concern for machine learning applications. To
find adversarial examples for a network one looks for in-
puts changing the output of the network while being close
(under some norm) to the original data sample. There are a
number of methods to solve this optimization problem and
to attack a network. Adversarial attacks can be divided into
white box methods that use gradient information about the
model [e.g., 6, 11, 13, 14, 20], and black box methods that
only use the output of the network [e.g., 1, 2, 5, 17, 23].

Defenses With an increasing awareness of the risk posed
by adversarial examples, a vast number of defenses were
proposed to increase adversarial robustness. For exam-
ple, some defenses rely on additional input pre-processing
[e.g., 16], some introduce architectural changes [e.g., 41],
and others propose methods for detecting adversarial exam-
ples [e.g., 21]. However, most of these defenses eventually
turned out to be ineffective against stronger attacks after
publication [3, 38]. Until now only adversarial training [20]
and its variants [e.g., 15, 27, 28] stood the test of time and
could not be circumvented. A different approach to defend
classifiers against adversarial perturbations are certified de-
fenses which give a theoretical guarantee of the classifier’s

robustness. Yet, the robustness of these approaches does not
yet reach that of adversarial training [12, 19, 40].

Challenges in Evaluating Defenses Properly evaluating
the robustness of a model against adversarial examples is
non-trivial and there are many potential pitfalls [9]. The
critical issue is that when a defense is shown to be robust to
a specific attack, this either means that the model is truly
robust, or that the attack is suboptimal (see Figure 1A).
Possible reasons for an attack to be ineffective are incor-
rect hyperparameters, or mechanisms in the model that (un-
intentionally) hinder the attack’s optimization process [3].
Examples include defenses built around non-continuous ac-
tivation functions [e.g., 41] or relying on vanishing gradi-
ents [e.g., 36]. To address the former issue, prior work has
developed attacks that alleviate the need to manually tune
hyperparameters [14]. But as we will show, these attacks
are not guaranteed to work well for any model. While the
latter issue can be counteracted by using adaptive attacks
[38] that are adjusted to a specific model’s idiosyncrasies,
it remains non-trivial to detect suboptimal attacks in the
first place. Previous work suggested guidelines for evalu-
ating the adversarial robustness of a model [9] or developed
(passive) indicator values hinting at a failed evaluation [26].
These indicator values are based on metrics tracked during
an adversarial attack and check for certain failure cases. Our
work goes beyond these indicator values by arguing that re-
searchers should actively demonstrate their adversarial at-
tack works and is sufficiently strong, and that their empiri-
cal findings can be trusted.

3. Active Attack Evaluation Tests
The evaluation of a defense against adversarial attacks

becomes more reliable — and the estimated robustness
more correct — if the attack is believed to be sufficiently
strong. The strength of an attack is not an absolute value



but depends on the defense it is meant to evaluate, as vari-
ous defense mechanisms hinder specific attacks [3]. Thus,
for a new defense one needs to demonstrate that the attack
proposed to evaluate it is appropriate. In this section, we
propose a test that measures the adequacy of a defense’s
evaluation scheme, and is thereby able to warn researchers
of potentially unreliable robustness claims.

As stated before, to empirically demonstrate the robust-
ness of a classifier f for some input xc one runs an attack
and shows that it fails to find an adversarial example xadv
within distance d(xc, xadv) ≤ ε. But can one really be sure
there are no adversarial examples in the ε ball if the attack
fails? Since the attack cannot give a guarantee for this, there
might still be stronger attacks that do find adversarial exam-
ples (see Figure 1A).

We propose a test that enables researchers to check
whether an attack is too weak to support their robustness
claims. In our test we craft a new classifier that is as sim-
ilar as possible to the original, but where we intentionally
inject an adversarial example xadv. Then, we measure the
robustness of the new (by definition vulnerable) classifier
by running the evaluation method and checking whether an
adversarial example is found. If the originally used attack
fails to find adversarial examples for the modified classifier,
we cannot expect it to properly estimate the robustness of
the original classifier either.

Test for Classifiers with Linear Classification Readouts
We begin by describing how to construct the modified vul-
nerable model for a classifier f that consists of a feature
extractor f∗ followed by a linear classification head. Any
standard neural network architecture falls into this category:
the feature extractor f∗ is every layer except the last, and the
linear classification head is the final logit projection layer.
We keep the feature extractor f∗ unchanged to avoid chang-
ing the fundamental behavior of the model, but replace the
classification readout with a newly trained module. This
module is trained on a new, specially constructed dataset.
This dataset allows us to reliably create a classifier where—
by design—there exists at least one adversarial example for
each sample. A pseudocode definition of our test is shown
in Algorithm 1. In detail, for each test sample xc our test
consists of the following steps:

Initially, we create two collections of input samples
which are perturbed versions of xc

Xi := { x̂ | d(xc, x̂) < ξ · ε ∧ x̂ 6= xc } ∪ { xc }1,...,Ni and
Xb := { x̂ | d(xc, x̂) = ε }1,...,Nb ,

which are sets of points from the inside and the boundary
of the ε-ball, respectively, with size Ni, Nb > 0. Further,
ξ ∈ (0, 1) controls the margin between the inner Xi and the
boundary set Xb. Decreasing ξ effectively increases the gap

Algorithm 1 Binarization Test for classifiers with linear
classification readouts

input: test samples Xtest, feature extractor f∗ of origi-
nal classifier, number of inner/boundary samples Ni and
Nb, distance ε, sampling functions for data from the in-
side/boundary of the ε-ball.

function BINARIZATIONTEST(f∗,Xtest, Nb, Ni, ε)
attack success = []
rnd attack success = []
for all xc ∈ Xtest do
b = CreateBinaryClassifier(f∗, xc, ε)
# evaluate robustness of binary classifier
attack success.insert (RunAttack(b, xc))
rnd attack success.insert (RunRndAttack(b, xc))

ASR = Mean(attack successful)
RASR = Mean(random attack successful)
return ASR, RASR

end function

function CREATEBINARYCLASSIFIER(f∗,xc)
# draw input samples around clean example
Xi = { xc } ∪ { SampleInnerPoint(xc, ε) }1,...,Ni

Xb = { SampleBoundaryPoint(xc, ε) }1,...,Nb

# get features for images
Fi = { f∗(x) | x ∈ Xi }
Fb = { f∗(x) | x ∈ Xb }
# define labels & create labeled dataset
D = { (x̂, 0) | x̂ ∈ Fi } ∪ { (x̂, 1) | x̂ ∈ Fb }
# train linear readout on extracted features
b = TrainReadout(D)
return binary classifier b based on feature encoder f∗

end function

between inner and boundary points, thus, making it easier
to distinguish between the two sets of samples.

Next, for every sample in each of the two sets, obtain the
feature representation of the penultimate layer of f ,

Fi := { f∗(x) | x ∈ Xi } and Fb := { f∗(x) | x ∈ Xb }

Now, train a linear (binary) discriminator g that distin-
guishes samples from Fi and Fb, i.e., it distinguishes be-
tween mildly perturbed images — the interior of the ε-
ball — and some more strongly perturbed images — on
the boundary of the ε-ball. To mimic the behavior of the
normal classifier’s readout as much as possible, we roughly
match the value range of the predicted logits. We want to
make sure there exists at least one sample within the threat
model’s ε-ball that g classifies differently than the original
sample. Thus, we need to ensure that g achieves a perfect
accuracy on these two sets. If this is not possible for a sam-
ple xc, we cannot apply the test and, hence, skip the sample.



By combining the original classifier’s feature extractor
f∗ with the binary discriminator g, i.e. h = g ◦ f∗, one
gets a new classifier that maps samples to a binary decision.
Most importantly, each boundary sample Xb acts as an ε-
bounded adversarial example xadv for the clean sample xc.

We are interested in two properties of this classifier h:

1. The efficacy of the used evaluation method/adversarial
attack. For this, one uses the original adversarial attack
to attack the modified model h for the clean sample xc
and records whether an adversarial sample x∗ within the
allowed ε-ball is found. When calculated and averaged
over multiple samples, we call this value the test score.

2. The difficulty of the test. To assess this, we use a model-
agnostic attack, namely a purely randomized one. We at-
tack the modified classifier h by randomly sampling ap-
proximately as many additional data points from within
the ε-ball around the clean sample xc as the adversarial
attack queries the model, e.g. for an N -step PGD attack
[20] useN additional random samples. Finally, one tests
whether at least one of them turns out to be an adversarial
perturbation for h. By averaging over multiple samples,
we get the random attack success rate (R-ASR).

Note that if the classifier f does not use a linear classifi-
cation readout, one has to modify the test slightly: Instead
of using a linear readout for g one needs to use the same type
of mechanism that was used originally. While this modifica-
tion is conceivable for various mechanisms, e.g. k-nearest
neighbors classification [35], there might be architectures
for which this is not possible, e.g., classification through
likelihood estimations based on generative models [32, 45].

Test for Models Leveraging Detectors Appendix A
shows how to adapt this test to detection defenses.

4. Evaluation
Our test would have potentially prevented the publica-

tion of eleven out of thirteen broken defenses. We apply our
binarization test to thirteen defenses and show that it would
have identified flaws in nine previously peer-reviewed (and
then later broken) and two published (but not yet broken)
defenses. All of these defenses assume an `∞ threat model.
The specific design choices for the tests adapted to each de-
fense can be found in Appendix B.

Defenses without Detectors We analyze eight defenses
which use a classifier with a linear classification readout [8,
22, 25, 31, 33, 41, 43, 44].

We additionally apply our test to two defenses that do
not use a simple linear readout to perform classification. It
is straightforward to adapt the binarization test defined in
Algorithm 1 for these classifier architectures. The defense

by Verma et al. [39] leverages an ensemble of readouts. For
our test we therefore also train an ensemble of binary read-
outs. The classifier of Pang et al. [24] learns to map images
to pre-defined class-prototype vectors, and then uses near-
est neighbour classification. We reflect this in the test by
using two of the class prototypes an associate them with the
inner and boundary samples, respectively. Then we re-train
a linear layer mapping from features to class prototypes.

In fact, we are the first to show that the defense by
Sarkar et al. [31] is less robust than originally reported, as
suggested by the fact that it fails our test. All of the above
defenses except those by Sarkar et al. [31] were known to
be flawed and have been circumvented before.

Defenses with Detectors We investigate three published
defenses that aim to detect adversarial perturbations. Fol-
lowing previous work [7], we analyze each defense in a set-
ting where it achieves a false positive rate of 5 %. While the
detection algorithm proposed by Roth et al. [29] runs sta-
tistical tests on the classifier’s confidence, Shan et al. [34]
and Yang et al. [42] analyze earlier activations of the classi-
fier. The first two defenses have been broken before [7, 38]
while the latter had not been independently re-evaluated.

4.1. Evaluation of Not-previously-broken Defenses

We begin by investigating the two recent and not yet bro-
ken defenses. Here, we are interested in seeing whether the
original robustness evaluations pass our binarization test.
While a positive result would increase confidence in the de-
fenses’ claims, a negative outcome would cast doubts.

Sarkar et al. [31] The original evaluation of this defense
fails our test with a test score of 0.04. This is strong
evidence that the attack is weak and thus the robustness
claim likely overestimated. Upon investigation, we found
a flaw in the original evaluation’s code: The statistics of
the batch normalization layers are not frozen during evalu-
ation, which changes the behavior of the model during the
attack. Properly freezing these layers at inference and in-
creasing the number of PGD steps from 20 to 75 yields a
perfect score (1.0) in our binarization test. Moreover, this
updated evaluation methodology reduces the robust accu-
racy to ≤ 1 % down from the originally reported 60.15 %
and, thus, effectively breaks the defense.

Yang et al. [42] For this detector-based defense, we find
that the attack used in the original evaluation is agnostic
to the detector and only targets the classifier. Consequen-
tially, this attack fails our binarization test with a low score
of 0.26. We thus create a new adversarial attack based on
PGD that combines two objectives: (1) fool the classifier by
maximizing the adversarial loss and (2) stay undetected by
matching the features of a non-adversarial sample as much
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Figure 2. The binarization test identifies flawed adversarial evaluations. The x-axis shows the score in our proposed binarization test for
the original attack (upper) and a subsequent improved attack (lower). We define a threshold of 0.95 that attacks need to achieve to pass our
test. Note that for each defense, the improved attack substantially decreases the defense’s robust accuracy (by at least 12%). Black markers
indicate original attacks that fail the test, as well as improved attacks that pass the test (i.e., true positives and true negatives for our test).
Red markers indicate suboptimal original evaluations that still pass our test (false positives). Orange markers indicate re-evaluations that
used suboptimal attacks (as shown by our test) that still broke the defense. We discuss these cases in Section 4.2. Checks and crosses in the
legend indicate passing/failing tests for the original and the re-evaluation, respectively. See Appendix, Figure 4 for the robust accuracies.

as possible (a feature matching attack [30, 38]). This adap-
tive attack achieves a nearly perfect score of 0.99 in the
test and reduces the robust accuracy of the defense from
the originally reported 99 % down to ≤ 12 %.

4.2. Interpreting Test Results for Weak & Strong
Attacks

Since eleven of the considered defenses have already
been broken before, and we showed how to break the re-
maining two, we now have access to both a flawed and
a well-working adversarial evaluation method for each de-
fense. This allows us to compare how these attacks perform
in terms of both the estimated robust accuracy and the score
on the binarization test. We visualize the results in Figure 2.
For eleven out of the thirteen considered defenses, our pro-
posed test would have flagged their evaluation as insuffi-
cient: the original attacks’ test performance is substantially
below a perfect score. Furthermore, the test scores improve
for almost all defenses when replacing the originally used
evaluation code with an improved attack.

Explaining the False Positives Our test incorrectly lets
two defense evaluations that had bugs pass (see red markers
in Figure 2). When investigating these failure cases in more
detail we find that the original attack used by Sen et al. [33]
is not bad or incorrectly implemented per se, but is not used
correctly. Namely, the attack generates adversarial exam-
ples with respect to the classifier’s predicted label, instead
of the ground-truth label. As a result, for some misclassified
samples the attack actually corrects the classifier’s mistake!
By switching to an attack that correctly targets the ground-
truth label, we reduce the robust accuracy drastically.

Unfortunately, our test is not suited for catching such
a mistake. Indeed, by design, our test constructs a binary

classifier with 100% accuracy (and thus the classifier’s pre-
dicted label is always equal to the ground-truth). If we view
our proposed test as a unit test for an attack, then the type
of bug in the above evaluation is akin to an integration bug,
where the (correct) attack is incorrectly called.

For the defense by Zhang et al. [43] we notice a high
R-ASR value (> 0.75) that we could not decrease further.
We hypothesize that by increasing the number of inner sam-
ples Ni substantially, the test might become hard enough to
indicate sub-optimal evaluations for this defense.

Explaining the Suboptimal Re-evaluations There are
also four defenses for which the improved attacks still fail
our test, even though their test performance is better than
for the original attacks. The authors of the improved attack
for Pang et al. [25] note that while this attack already breaks
the defense, one could improve the attack further. For the
defenses by Mustafa et al. [22] and Zhang et al. [44] the im-
proved attacks are not adaptive attacks but part of AutoAt-
tack’s attack collection [14]. Although these attacks were
sufficient to drastically reduce the measured robustness of
the defenses (see Appendix, Figure 4), they are not guar-
anteed to be the optimal attacks for these defenses. While
the attack [7] used for the re-evaluation breaks the defense
by Shan et al. [34], the imperfect test score hints at an even
more potent and yet-to-be-discovered adaptive attack.

4.3. Hardness of the Test

To put the performance that an adversarial attacks
achieves in the binarization test into perspective, we quan-
tify the hardness of the test using the prior random attack
success rate (R-ASR). Comparing it to the test result of the
attack allows us to deduce how effective the attack is in find-
ing adversarial examples for the model in question.



Figure 3. Hyperparameters influence test’s hardness. For the
defense by Mustafa et al. [22], we compare the test performance of
two sub-optimal attacks, namely the original PGD attack (orange)
and AutoPGD (red) [14], yielding robust accuracies of 32.32%
and 8.16% with that of the more optimal FAB attack (blue) [13]
yielding 0.71%. As one indicator of the test’s hardness, we show
the ASR of a random attacker (R-ASR, black). Also, the test’s
hardness is quantified by κ which, in feature space, measures the
distance between decision boundary and boundary sample relative
to the distance between boundary and closest inner sample.

There are several parameters and design choices relevant
for our test that influence its hardness. For one, by increas-
ing Ni we train the binary discriminator on a larger number
of different non-adversarial points which increases robust-
ness of the discriminator and, thus, makes the test harder.
Contrary, by increasing Nb we plant a larger number of ad-
versarial examples for the discriminator within the ε-ball,
making the test simpler.

Even with a large but finite number of training samples,
there is no unique solution for the binary discriminator but
instead a set of valid solutions. While all of these classi-
fiers have perfect accuracy on the training set, they differ in
how close the decision boundary is placed to the boundary
samples.The closer the decision boundary to boundary sam-
ples, the smaller the volume of valid adversarials examples
and, thus, the harder the test becomes. The effect of the the
decision boundary’s closeness on the test’s hardness is vi-
sualized in Figure 3 for example defense. Here, placing the
boundary closer to the boundary samples decreases both the
R-ASR as well as the ASR of two sub-optimal attacks while
that of a better suited attack stays robustly at 1.0.

On the one hand a test that is too easy has no predictive
power about the attack’s efficacy (since any attack might
trivially pass it), while on the other hand a test that is too
challenging might actually underestimate the attack’s true
performance. Therefore, one needs to tune the test’s hard-
ness to a reasonable level. For tweaking the test’s hard-

ness we recommend the following procedure: To make sure
one does not overestimate (since this is the more danger-
ous direction) the test performance, start with a configura-
tion that makes the test as hard as possible while still being
computationally feasible. Now, decrease the hardness until
the adversarial attack in question reaches an (almost) per-
fect ASR. Note that if there is no configuration that yields
this, then the the attack did not pass the test and one should
be skeptical of the attack’s ability to properly estimate the
classifier’s robustness. Finally, compare the ASR with the
R-ASR: If the ASR is not substantially higher — or is even
lower — than the R-ASR, this is strong evidence that the
attack performs poorly. If instead the gap is large the at-
tack has passed this necessary test and might be powerful
enough to properly estimate the classifier’s robustness.

5. Discussion & Conclusion
This paper made a case for the need for active tests. The

goal of an active test is to provide compelling evidence that
an attack has sufficient power to evaluate a classifier’s ro-
bustness. We presented such a test for defenses using lin-
ear classification readouts and showed how to adapt this test
for different defense mechanisms such as detector-based de-
fenses. The type of test proposed in this work acts as a nec-
essary condition for robustness evaluations, i.e., an attack
that fails the test will most likely overestimate the classi-
fier’s robustness.

While we have presented a potential test that could help
defense authors demonstrate sufficient power of their adver-
sarial evaluation, our tests cannot be comprehensive and ap-
ply to every possible defense. For example, all of our tests
are primarily designed to work for defenses that use lin-
ear classification readout layers. If a defense were to have
a different classification layer instead, such as a k-Nearest
Neighbor classifier, then the tests we develop would not ap-
ply directly and need to be modified accordingly. Conse-
quentially, defense authors should aim to develop their own
tests, depending on the particular claims that are made.

As we showed that this type of test would have prevented
the publication of thirteen flawed defenses, we are opti-
mistic that active tests can improve the reliability of future
publications in the field of adversarial robustness.
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holm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 2142–2151. PMLR,
2018. 2

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 11

[19] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to ad-
versarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 656–672.
IEEE, 2019. 2

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. 2, 4

[21] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations. In
5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference



Track Proceedings. OpenReview.net, 2017. 2, 10
[22] Aamir Mustafa, Salman H. Khan, Munawar Hayat, Roland

Goecke, Jianbing Shen, and Ling Shao. Adversarial defense
by restricting the hidden space of deep neural networks. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 3384–3393. IEEE, 2019. 4, 5, 6

[23] Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple
black-box adversarial attacks on deep neural networks. In
CVPR Workshops, volume 2, 2017. 2

[24] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning
Chen, and Jun Zhu. Rethinking softmax cross-entropy loss
for adversarial robustness. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. 4

[25] Tianyu Pang, Kun Xu, and Jun Zhu. Mixup inference: Bet-
ter exploiting mixup to defend adversarial attacks. In 8th In-
ternational Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. 4, 5

[26] Maura Pintor, Luca Demetrio, Angelo Sotgiu, Giovanni
Manca, Ambra Demontis, Nicholas Carlini, Battista Big-
gio, and Fabio Roli. Indicators of attack failure: Debugging
and improving optimization of adversarial examples. ArXiv
preprint, abs/2106.09947, 2021. 1, 2

[27] Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-
based adversarial training: Reducing excessive margin to
achieve a better accuracy vs. robustness trade-off. In ICML
2021 Workshop on Adversarial Machine Learning, 2021. 2

[28] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian,
Florian Stimberg, Olivia Wiles, and Timothy A Mann. Data
augmentation can improve robustness. Advances in Neural
Information Processing Systems, 34, 2021. 2

[29] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The
odds are odd: A statistical test for detecting adversarial ex-
amples. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5498–5507. PMLR, 2019.
4

[30] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J.
Fleet. Adversarial manipulation of deep representations. In
Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings, 2016. 5, 10

[31] Anindya Sarkar, Anirban Sarkar, Sowrya Gali, and Vi-
neeth N Balasubramanian. Get fooled for the right rea-
son: Improving adversarial robustness through a teacher-
guided curriculum learning approach. ArXiv preprint,
abs/2111.00295, 2021. 4

[32] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland
Brendel. Towards the first adversarially robust neural net-
work model on mnist. In International Conference on Learn-
ing Representations, 2018. 4

[33] Sanchari Sen, Balaraman Ravindran, and Anand Raghu-
nathan. EMPIR: ensembles of mixed precision deep net-
works for increased robustness against adversarial attacks.

In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. 4, 5

[34] Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao
Zheng, and Ben Y Zhao. Gotta catch’em all: Using hon-
eypots to catch adversarial attacks on neural networks. In
Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 67–83, 2020. 4,
5, 11

[35] Chawin Sitawarin and David Wagner. Defending against ad-
versarial examples with k-nearest neighbor. arXiv preprint
arXiv:1906.09525, 2019. 4

[36] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-
mon, and Nate Kushman. Pixeldefend: Leveraging gen-
erative models to understand and defend against adversar-
ial examples. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. 2

[37] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014. 2

[38] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial ex-
ample defenses. Advances in Neural Information Processing
Systems, 33, 2020. 1, 2, 4, 5

[39] Gunjan Verma and Ananthram Swami. Error correcting
output codes improve probability estimation and adversar-
ial robustness of deep neural networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
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A. Tests for Models Leveraging Detectors

A test similar to the one presented in Section 3 can also
be used to validate the evaluation of detection defenses.
These use an additional algorithm that detects and rejects
adversarial examples [21]. As earlier, we assume that the
classifier can be divided into a feature encoder and linear
readout.

We define two tests (a “normal” and “inverted” test).
Any reliable evaluation method must pass both. A pseu-
docode definition of the proposed tests is given as Algo-
rithm 2.

Normal Test Adversarial examples for a detection de-
fense need to change the classifier’s output while remaining
undetected. Thus, we need to change the construction of
the binary classifier slightly. Namely, we modify the set Xb

such that none of these samples gets rejected by the detec-
tor - in practice, we enforce this using rejection sampling,
by redrawing boundary points until we find one that is unde-
tected. Note, that we make no modifications to the detector,
since this might require non-trivial optimization of the de-
tector’s parameters. Some adversarial attacks (e.g., feature
matching [30]) for detector defenses assume access to refer-
ence data samples that belong to a different class but are not

Algorithm 2 Binarization Test for classifiers with a linear classification readout and a detector

input: test samples Xtest, feature extractor f∗ of original classifier, adversarial detector d(·) returning 1 for detected
samples and 0 otherwise, number of inner/boundary/reference samples Ni/Nb/Nr, distance ε, sampling functions for data
from the inside/boundary of the ε-ball, relative distance (in terms of ε) of positive and reference samples η > 1.

function BINARIZATIONTEST(f∗, d,Xtest, Nb, Ni, Nr, ε, η)
attack success = []
rnd attack success = []
for all xc ∈ Xtest do
b,Xr = CreateBinaryClassifier(f∗, xc, ε)
# evaluate robustness of binary classifier
attack success.insert (RunAttack(b, d, xc,Xr))
rnd attack success.insert (RunRndAttack(b, d, xc))

ASR = Mean(attack successful)
RASR = Mean(random attack successful)
return ASR, RASR

end function

function INVERTEDBINARIZATIONTEST(f∗, d,Xtest, Nb, Ni, Nr, ε, η)
# ¬d denotes the negated/inverted detector
return BinarizationTest(f*,¬d,Xtest,Np,Nn, ε, η)

end function

function CREATEBINARYCLASSIFIER(f∗,xc, d)
# draw input samples around clean example
Xi = { xc } ∪ { SampleInnerPoint(xc, ε) }1,...,Ni

Xb = { SampleBoundaryPoint(xc, ε), d(z) = 1 }1,...,Nb

# get positive samples outside the ε-ball, e.g., as a reference for logit matching attacks
Xr = { SampleBoundaryPoint(xc, ηε), d(z) = 1 }1,...,Nr

# get features for images
Fi = { f∗(x) | x ∈ Xi }
Fb = { f∗(x) | x ∈ Xb }
Fr = { f∗(x) | x ∈ Xr }
# define labels & create labeled dataset
D = { (x̂, 0) | x̂ ∈ Fi } ∪ { (x̂, 1) | x̂ ∈ Fb } ∪ { (x̂, 1) | x̂ ∈ Fr }
# train linear readout on extracted features
b = TrainReadout(D)
return binary classifier b based on feature encoder f∗ and reference samples Xr

end function



adversarial and, thus, do not get rejected. In our setting this
can be realized by randomly sampling data points outside
the ε ball. Thus, we create a new collection

Xr := { x̂ | d(xc, x̂) = ηε }1,...,Nr ,

for which the binary classifier must predict the same class
as for the boundary samples Xb. Here, Nr ≥ 0 and η > 1.0
control the number of samples and how far outside of the ε
ball they are located. Again, as for Xb, we need to ensure
that none of these samples get detected. By training the
linear readout on Xi, Xb and Xr we guarantee that there
exists at least one undetected adversarial sample within the
ε-ball around xc, and at least Nr samples outside the ε-ball
that are also undetected.

Inverted Test One potential issue with the normal test
above, is that an attack might pass the test even though the
attack completely ignores the detector. Indeed, many eval-
uations of detector defenses consider attacks that are obliv-
ious to the presence of the detector [10]. Thus, an attack
passing the test may not be sufficient to tell us that the at-
tack is actually successfully targeting the detector.

To this end, we introduce a second inverted test that in-
verts the attack’s goal: Instead of finding adversarial sam-
ples that do not get detected, the goal is now to find an
adversarial example that is detected. Since any detection
defense that claims non-zero robustness must detect some
adversarial examples, we can use these for constructing the
set of boundary samplesXb. Finally, we only need to negate
the decision of the detection algorithm before proceeding
exactly as for the previously described test.

Passing both the normal as well as the inverted test is a
necessary condition for an adequate adversarial attack. In
fact, this indicates that the attack is not agnostic to the de-
tector but properly takes it into account. In contrast, passing
only one of the tests indicates that only the classifier and not
the detector is directly targeted.

B. Experimental Details
All defenses investigated consider an `∞ threat model.

While the defense by Shan et al. [34] focuses on an ε = 0.01
bound, the rest uses the more common ε = 8/255 bound.

We evaluate the binarization test for 512 randomly cho-
sen samples from the CIFAR-10 [18] test set.

For all attacks we set the gap between the boundary and
inner points to η = 0.05, measured relatively to the used
ε value. We evaluated detector-based defenses using Algo-
rithm 2, and use ξ = 1.75, measured in terms of ε.

As outlined above in Section 4.3, we adjust the hard-
ness of the test until the test produces conclusive results,
i.e., the random attack success rate (R-ASR) is not too
high. This leads to a parameter choice of Ninner = 999
for all defenses but that of Zhang et al. [43] for which used

Ninner = 9999. While we set the number of boundary sam-
ples to Nboundary = 10 for Zhang et al. [44], we use set it
to 1 for all other defenses. Also, we sample the bound-
ary point(s) from the corners of the `∞ ε-box, since this
increases the test’s difficulty further.

Further, for adjusting the hardness of the test we adjust
the bias of the linear classifier such that the distance be-
tween boundary sample and decision boundary measured in
terms of the distance between boundary sample and closest
inner sample is κ = 0.999 (see Section 4.3).

We sample the inner samples uniformly from the ε hy-
percube, and the boundary samples from the corners of the
cube. We opted for this, since it increases the hardness of
the test. Further, for calculating the R-ASR we samples
both 200 points from the inner and 200 more from the cor-
ners of the space, as this significantly increased the R-ASR
and, thus, gives a more realistic estimate of the test’s diffi-
culty.



C. Additional Results
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Figure 4. Robust accuracy as a function of the test performance. Thicker markers denote results for the attacks originally used by the
defenses’ authors, while smaller ones correspond to that of adaptive attacks that broke the defense. The gray arrows between these points
indicate how the scores change by using using a better suited attack. Orange points indicate false negatives/non-conclusive test results.
Triangles denote defenses leveraging detection algorithms.
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