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Abstract

Deep convolutional neural networks are now performing
increasingly superior in various fields, while the network
parameters are getting massive as the advanced neural net-
works tend to be deeper. Among various model compression
methods, quantization is one of the most potent approaches
to compress neural networks by compacting model weights
and activations to lower bit-width. The data-free quanti-
zation method is also proposed, which is specialized for
some privacy and security scenarios and enables quanti-
zation without access to real data. In this work, we find
that the tuning robustness of existing data-free quantization
is flawed, progressing an empirical study and determining
some hyperparameter settings that can converge the model
stably in the data-free quantization process. Our study aims
to evaluate the overall tuning robustness of the current data-
free quantization system, which is existing methods are sig-
nificantly affected by parameter fluctuations in tuning. We
also expect data-free quantification methods with tuning ro-
bustness to appear in the future.

1. Introduction
Recently, deep convolutional neural networks are per-

forming increasingly superior in various of applications,
such as image classification [7,13–17,19,21], object detec-
tion [4, 5, 8, 11, 12, 18], semantic segmentation [3, 23], etc.
However, with the continuously improved performance, the
network parameters is getting massive as the advanced neu-
ral networks tend to be deeper. Therefore, deploying state-
of-the-art models on resource-constrained devices becomes
more challenging, which has to strike a balance between
computational complexity and inference latency. Among
various model compression methods, such as distillation,
pruning, parameter sharing, lightweight architecture de-
sign and so on, quantization is one of the most potential
approaches to compress neural networks by compacting
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model weights and activations to lower bit-widths, which
enables the model to accelerate during inference by integer
operations and reduce model size.

Since the full-precision parameters of the model are pro-
jected to low-bit representations, it is almost inevitable for
quantized models to lose information. Therefore, mod-
els may suffer an accuracy degeneration after quantization,
especially when quantized to ultra-low bit-width. Thus,
the general methods to obtain accurate quantized networks
are calibrating or fine-tuning the quantized model to miti-
gate the accuracy loss, namely Post-Training Quantization
(PTQ) and Quantization-Aware Training (QAT), respec-
tively. In contrast to QAT which requires a large amount
of data for training, PTQ only takes a small amount of unla-
beled data and directly calibrate a well pretrained model to
be quantized. It is more efficient for time and energy, which
is now widespread in real applications in industry. It is no-
table that in some certain scenarios, especially in high pri-
vacy situations such as medical, personal information, etc.,
it is always difficult to access the original data for secu-
rity concerns. Therefore, data-free quantization method is
proposed which enables quantization without access to real
data. The mainstream of data-free quantification methods is
based on generative approaches, i.e., generating a batch of
synthetic data for further fine-tuning or calibration.

However, we notice that it is worth a more profound ex-
ploration of the robustness of data-free quantization since
the performance strongly fluctuates when the calibration
strategy or hyperparameters are modified. For example,
for some data-free PTQ quantization methods (such as Ze-
roQ [1]), if we change the hyperparameters such as the
learning rate in a particular range, the results will change
severely and even occur partial overfitting. Thus, to ex-
plore the tuning robustness of existing data-free quanti-
zation methods, we investigate the quantized models pro-
duced under different hyperparameter settings and calibra-
tion strategies of data-free quantization to present their tun-
ing robustness.

We first empirically select the sensitive hyperparame-
ters for two types of mainstream data-free quantization
pipelines. Our comprehensive experiments make it possible



Figure 1. As can be seen in the figure, data-free quantization con-
sists of two basic frameworks, PTQ and QAT. Generators are the
most important part of them, as we use fake data in many of our
methods.

to present optimal hyperparameter settings that can help the
model converge stably in the data-free quantization process.
Finally, we conclude and categorize the hyperparameters
broadly into two levels. We recommend paying more atten-
tion to those hyperparameters that would impact the perfor-
mance while designing and applying data-free quantization
approaches. While for those that have neglectable impact,
we provide a set of generally functional hyperparameters.
Our study aims to evaluate the overall tuning robustness of
the current data-free quantization system, which will sig-
nificantly fluctuate with different hyperparameter settings.
While giving recommended settings and analysis, we also
expect data-free quantification methods with tuning robust-
ness to appear in the future.

2. Related Work
2.1. Data-Free Quantization

The existing data-free quantization mainly includes two
major approaches, PTQ and QAT. The main difference
between them is whether the quantized model is further
trained or not. The PTQ method only calibrates the quan-
tizer, which is often faster and requires less computational
resources, while the QAT method fine-tunes the quantized
model to achieve higher accuracy. The frameworks are
shown in Fig. 1. Previous works have been devoted to ef-
fective data-free quantization methods. DFQ [10], which
improves the calibration process through cross-layer equal-
ization, offset absorption, and offset correction; ZeroQ,
a zero-shot scheme that allows mixed-precision quantiza-
tion by generating and optimizing a set of synthetic data.
DSG [22] relaxes the constraints on the BN layer and uses
layer-level sample enhancement with different loss func-
tions to jointly diversify the synthetic samples. GDFQ [20]
proposes a knowledge-matching generator that can mine
the distribution information and boundary knowledge of the
data by Gaussian input sampling noise, and it also applies
knowledge distillation to calibrate the quantized model bet-
ter. ZAQ [9] is a data-free quantization method based on
adversarial learning, and quantization is accomplished by

”adversarial” between the generator and the quantization
model. Qimera [2], which mainly adds the previously ig-
nored boundary information to the generated data, generates
synthetic boundary supporting [6] samples by using super-
imposed latent embeddings, while proposing to understand
the mapping layer and extracting information from the full
precision model.

2.2. Data-Free Quantization’s Tuning

While calibrating a quantized model using data-free
quantization methods, the performance is highly affected
by calibration hyperparameters and strategies. To analyse
the tuning robustness of data-free quantization methods, we
study the following hyperparameters:

Learning rate. For data-free quantization, on the one
hand, we need to train the generator to get suitable fake data,
and on the other hand, when it comes to a QAT method, the
quantized model needs to be retrained, and that’s why we
need to choose the appropriate learning rate to get the best
outputs of our quantized models.

Epochs. For QAT, we set a larger number of training
epochs to find better results when fine-tuning. For PTQ,
we generally generate a batch of data and then calibrate the
quantized model just one time. However, when we repeat
the training during the data generation phase it is impossible
for us to know exactly which result is better, more epochs
perhaps yield worse results by overfitting. Moreover, for
model quantization, we have the full-precision model as
input, and there is no process of initializing the classifi-
cation model. As for generative Data-Free Quantization
method, we also need to train the generator, and the gen-
erator needs to be initialized. If the initialized generator is
directly used to fine-tune the quantization model at the be-
ginning, it may be counterproductive.The common solution
is to warm up the generator before it can produce helpful
samples. Therefore, the warm-up steps refers to the number
of rounds set by training the generator separately at the be-
ginning of quantization. Here, warm-up can be regarded as
an initialization process for the generator.

Weight decay. We often experience overfitting of the
training dataset, and weight decay can prevent such over-
fitting. This hyperparameter is involved in the fine-tuning
phase of the quantized model in the QAT method.

Batch size. If we don’t use batch training in Data-Free
Quantization, we need to input all the data to the network at
once during training, and then calculate the loss and update
the weights. When increasing the batch size, the gradient
of the Data-Free Quantization models would be more sta-
ble, and this is because the variance of the samples will be
reduced and the gradient will be more accurate as a result.
For instance, in ZeroQ scheme, We believe that the critical
batch size is the batch size of the fake data. On one hand
it determines the amount of fake data, on the other hand it



may affect the distribution characteristics of the fake data.

3. The Study of Turing Methodologies in Exist-
ing Data-Free Quantization

To study the tuning robustness of Data-Free Quantiza-
tion, we should first reproduce its low robustness perfor-
mance and then explore it in depth.

3.1. Robustness Observation for the Tuning Settings

We noticed that the data-free quantization method is
sometimes sensitive to specific hyperparameters. It means
that some hyperparameters are poorly robust. It is possible
that a small change can drastically affect the accuracy of
the quantized model. For this reason, we want to use a sys-
tematic approach to find the hyperparameters of low robust-
ness. The two mainstream methods correspond to different
types of hyperparameters. We can select these essential hy-
perparameters separately to study their commonalities and
differences. For example, the generated data’s batch size is
involved in both PTQ and QAT methods. For these all hy-
perparameters, we make small perturbations to explore their
impact on the final results to find the critical sensitive hyper-
parameters. Also, we can set different quantization bits and
backbone networks to find some acute settings. According
to the theoretical analysis, we believe that lower bits are
more sensitive relative to higher bits. The backbone net-
work with a more significant number of parameters is more
sensitive relative to smaller backbone networks.

3.2. Tuning of Post-Training Quantization

The ZeroQ scheme is one of the most typical PTQ meth-
ods, with high accuracy and fast quantization speed. We
selected the ZeroQ schemes as representatives of the PTQ
methods. For the PTQ method, the critical phase is the one
that generates the fake data, and the hyperparameters are
mostly concentrated in this part. For example, the batch
size(batch size) and the number of batches(num batch) rep-
resent the size of each batch of generated data and the
number of samples, respectively. They are two crucial hy-
perparameters that represent the generated data. The gen-
erated data are obtained from training, and hyperparam-
eters such as the learning rate(opt lr) during training are
also particularly important. There are also hyperparame-
ters for the ZeroQ scheme, including the minimum learn-
ing rate(sch min lr) and scheduler patience(sch patience),
which represent the lower bound on the learning rate of all
param groups and the number of epochs with no improve-
ment after which learning rate will be reduced. On the other
hand, the epochs at distillation(distillation epochs) repre-
sent the extent to which the fake data are trained and may
also impact the results. The wrong settings of all the above
hyperparameters may lead to model failure, one of the key
factors determining its robustness.

3.3. Tuning of Quantization-Aware Training

For the QAT method, the most representative one is the
GDFQ scheme. It has higher accuracy and can perform the
quantization task well, even in the low-bit case. In addition
to generating fake data, there is fine-tuning of the quan-
tized model in the QAT method. Therefore this part also
involves hyperparameters like the learning rate, but for a
different purpose. So there are more types of hyperparam-
eters in the QAT method. The QAT method generally uses
the generated data to continuously fine-tune the quantized
network and optimizes the generator simultaneously, unlike
the PTQ method, which generates fake data in a single pass.
So the batch size(batch size) may not have the same im-
pact on quantization as PTQ. Compared to the distillation
epochs and learning rate mentioned above, there are also
corresponding warm-up epochs(warmup epochs) and learn-
ing rate of generator(lr G) here. In addition, there is also
the learning rate of the optimizer(lr S), which refers to the
learning rate when fine-tuning the quantized model. What’s
more, we noted that the weight decay(weight Decay) and
decay rate of generator(decay Rate G) regarding the learn-
ing rate scheduler and optimizer might also impact quanti-
zation. Those as mentioned above are the key hyperparam-
eters for the QAT method and may affect the robustness of
the scheme.

After the above evaluation, we can observe some key
sensitive hyperparameters. Next, we should investigate how
the hyperparameters affect the final quantization accuracy
for certain sensitive or generally significant cases, which
can give us more comprehensive information about its ro-
bustness when tuning. We can extensively adjust the values
of crucial hyperparameters and explore trends in the varia-
tion of results. In addition, we can find some tuning strate-
gies for data-free quantization.

4. Experiments and Analysis
In past studies, we would generally only refer to the hy-

perparameter settings given. However, we can perturb these
hyperparameters to evaluate the hyperparameters’ sensitiv-
ity and the model’s robustness.

4.1. Experiments Settings

In this section, we will conduct an experimental anal-
ysis to give researchers a clearer understanding of the hy-
perparameters applied to the data-free quantization and a
trace when tuning the model. We choose two representa-
tive methods: one is ZeroQ for PTQ, using ResNet18 and
ResNet50 as backbone networks, for experiments on the
ImageNet dataset; the other is GDFQ for QAT, for which we
use ResNet20 as backbone networks, tuned on the CIFAR-
100 dataset.

For ZeroQ, we chose six tuning directions, namely



Figure 2. We based on ResNet18 with 4-bit quantization and tuned
corresponding ranges of batch size, num batch, opt lr, sch min lr,
sch patience, and distillation epoch on ZeroQ, and repeated the
experiments on 6-bit and 8-bit to obtain the model results.

batch size, num batch, opt lr, sch min lr, sch patience, and
distillation epochs, for which we applied certain pertur-
bations respectively, and the specific hyperparameters are
shown in Tab. 1. The corresponding results will be shown
in Fig. 2 and Fig. 4.

For GDFQ, we also choose six hyperparameters, namely
batch size, warmup epochs, lr S, lr G, decay Rate G, and
weight Decay, to which we applied specific perturbations
shown in Tab. 1 respectively. The corresponding results are
shown in Tab. 2.

From the results, we can see that in ZeroQ scheme,
opt lr and distillation epochs have more effects on the
model; in GDFQ scheme, the perturbations of lr S, lr G,
and warmup epochs have more impact on the model. In ad-
dition, we found that the tuning robustness of the lower bit
quantization was poor. For the ZeroQ scheme, 4-bit quan-
tization is challenging to achieve more satisfactory results,
and tuning robustness is naturally insufficient. At the same
time, the fluctuations in results in the QAT method are also
more pronounced for the 4-bit case. The following section
will conduct further experiments on these hyperparameters
that significantly impact data-free quantization. The follow-
ing section will be: first, we will do further experiments to
show the effect of the most significant learning rate on the
model. Secondly, we will show the impact of epochs. Fi-
nally, we will conclude with the experimental results and

Figure 3. We based on ResNet50 with 4-bit quantization and tuned
corresponding ranges of batch size, num batch, opt lr, sch min lr,
sch patience, and distillation epoch on ZeroQ, and repeated the
experiments on 6-bit and 8-bit to obtain the model results.

effects of other hyperparameters more commonly used in
data-free quantization.

4.2. Impact of Learning Rate

4.2.1 Impact on Quantization-Aware Training

In the QAT method, we fine-tune the quantized model si-
multaneously to train the generator to serve the fine-tuning
process better. We noticed that the training of the two parts
is relatively independent. With independent parameters up-
date procedures, different learning rates can be set. The
impact of lr S is similar to training a convolutional neural
network for classification. It controls the speed of param-
eters update and also affects the result. What is specific is
the setting of lr G, which may affect whether the generator
can successfully become ”warm” in the warm-up session
and whether the update of the quantized model and the up-
date of the generator can be synchronized in the further joint
training process. In the first phase of the experiments, we
also saw that the effect of lr G is more significant.

Based on the hyperparameter settings of the GDFQ
source code, we choose CIFAR-100 as the original dataset,
ResNet20 and ResNet56 as the backbone network, and
quantize the weights and activations to 4 bits. The origi-
nal lr S is set to 0.0001, lr G is set to 0.001, and the value
of lr G is adjusted to the original 0.01, 0.05, 0.1, 0.2, 0.5, 2,



PTQ batch size num batch opt lr sch min lr sch patience distillation epochs

tuning [160, 240] [1, 2] [0.05, 5] [1e-5, 1e-4] [80, 120] [400, 600]

QAT batch size warmup epochs lr S lr G decay Rate G weight Decay

tuning [160, 240] [2, 8] [1e-5, 1e-3] [1e-4, 1e-2] [0.08, 0.12] [1e-5, 1e-3]

Table 1. We specify a range for batch size, warmup epochs, lr S, lr G, decay Rate G, weight Decay, batch size, num batch, opt lr,
sch min lr, sch patience, and distillation epochs, and then adjust them. Suppose the accuracy is affected even in such a small range. In
that case, it is necessary to focus on the hyperparameters that significantly impact the model and investigate them further.

#Bits Baseline batch size warmup epochs lr S lr G decay Rate G weight Decay

160 240 2 8 1e-5 1e-3 1e-4 0.01 0.08 0.12 1e-5 1e-3

4 63.59 63.16 63.52 63.26 63.36 61.62 62.29 54.73 61.6 63.7 63.58 62.87 62.67
6 69.07 69.12 69.04 69.14 69.06 69.36 69.04 69.01 69.2 69.15 68.91 69.02 69.08
8 70.43 70.37 70.32 70.4 70.46 70.29 70.43 70.18 70.31 70.32 70.36 70.26 70.29

Table 2. We separately adjusted the hyperparameters of the data-free quantization according to the hyperparameter perturbation range
shown in Tab. 1. We obtained the corresponding accuracy of GDFQ, and the results are shown in this table. We noted that the model is
more susceptible in the case of lower bit-width quantization and more stable in the case of higher bit-width. We have blacked out the data
in the table that has changed significantly.

Figure 4. We conducted a more comprehensive review of lr G to
explore further how much its change would affect the model. We
adjusted lr G from 0.01 times of baseline to 100 times of base-
line based on ResNet20 and ResNet56, respectively, using 4-bit
quantization, and the results are displayed in Fig. As can be seen,
although the accuracy of ResNet56 is greater at the highest point,
its fluctuation is correspondingly greater, indicating that the ro-
bustness of GDFQ for lr G adjustment is not outstanding under
ResNet56. In contrast, its robustness for lr G adjustment is better
under ResNet20.

5, 10, 20, 50, 100 times, and compare the training results,
that is shown in Fig. 4.

These experiments show that too small or too large lr G
is not conducive to quantization. When lr G is set too large,
the number of times the model is optimized will be signif-
icantly reduced during the training process. It will be chal-
lenging to improve the accuracy at an earlier stage further.
For example, when lr G is 50 times and 100 times the orig-
inal value, there will be no accuracy improvement after the
ninth and second rounds, respectively. Of course, we do not
rule out that the model will reach a new extreme point at a
specific time when training continues, but this is not what

we hope to get. When lr G is set too small, we notice that
the average time required for every two accuracy improve-
ments increases, which means that the training is slowed
down. The final performance is that the quantization ac-
curacy does not meet expectations. Comparing the results
of the two backbone networks, we also noticed that for a
network with more parameters, the optimal setting value of
lr G is also higher. For ResNet20, the best lr G is about
0.001, while ResNet56 is about is 0.005.

For lr S, we noticed in the previous experiments that it
is also a sensitive hyperparameter. For further study, we set
the quantized bits to 4, the backbone networks to ResNet20,
and the original dataset is CIFAR-100. Then, we change the
value of lr s to 0.01, 0.05, 0.1, 0.2, 0.5, 2, 5, 10, 20, 50, 100
times the original. As shown in Fig. 5, although the opti-
mizer’s learning rate and the generator’s learning rate may
differ mechanistically on the final quantization results, there
is also an optimal set point for lr S. Besides, we find that
the impact of too large lr S on the results is more significant
compared to too small lr S.

4.2.2 Impact on Post-Training Quantization

In the PTQ method, we set the quantized bits to 6, the back-
bone networks to ResNet18 and ResNet50, and the original
dataset is IamgeNet. Based on the benchmark-setting, the
learning rate is extensively adjusted to 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 4.0, and the results are displayed
in Fig. 5. We can see that under the backbone of ResNet50,
the learning rate adjustment has a significant impact on the
model. Starting from a relatively low learning rate and grad-
ually increasing the learning rate upwards, we can get an
increasing and then decreasing accuracy curve like PTQ. A
lower learning rate adjusts too slowly at a certain epoch,



Figure 5. These four figures show our in-depth study of some of the sensitive hyperparameters. In (a), we adjusted lr S to 0.01x to 100x the
original, and GDFQ responded to this series of adjustments. In (b), we changed opt lr from 0.1 to 4 and conducted ZeroQ’s experiments
on ResNet18 and ResNet50, respectively. In (c), we increased the warm-up epochs from 0 to 64 and observed the different responses of
GDFQ to this perturbation under ResNet20 and ResNet56, respectively. In (d), we adjusted the distillation epochs from 50 to 1000 based
on ZeroQ under ResNet18 and ResNet50, respectively.

making the final learning very limited. However, a larger
learning rate is also undesirable because if the learning rate
is set very large at the beginning, it will be difficult to offset
the effect when the learning is in the incorrect direction.

However, for ResNet18, we can see that the robustness
of the data-free quantized model is better. The change of
the learning rate does not have any substantial impact on its
accuracy because the network of ResNet18 itself is smaller
and has fewer layers. Hence, the number of layers for quan-
tization is also smaller. Therefore, the loss associated with
quantization is minor, so when we change the learning rate,
the results on ResNet18 show that the accuracy does not
decrease. At the same time, since the network is more un-
complicated than ResNet50, the general accuracy is lower,
but the stability in most cases makes PTQ (ZeroQ) almost
perfectly robust on ResNet18.

4.3. Impact of Quantization Epochs

For the PTQ method, the impact of epochs comes mainly
from the distillation stage. While for the QAT method does
not have a separate distillation phase but a separate warm-
up phase. Therefore, for PTQ and QAT, ”the impact of
epochs” refers to distillation epochs and warm-up epochs,
respectively.

4.3.1 Impact of Warm-up Epochs

We change the setting of warm-up steps(warmup epochs) to
study the necessity of warm-up, and set the warm-up steps
to 0, 1, 2, 3, 4, 8, 16, 32, 64. And we compare the training
results, shown in Fig. 5.

Compared with other hyperparameters, the number of
warm-up steps has less impact on the final quantization ac-
curacy, but it is not entirely without influence. First, it is
easy to notice that when no warm-up phase is set, i.e., when
the warm-up step is 0, the results are the worst, with a dif-
ference of about 2-3 percentage points, which means that a
warm-up is necessary.

4.3.2 Impact of Distillation Epochs

For PTQ (ZeroQ), we use the backbone of ResNet18 and
ResNet50, respectively, and adjust the distillation epoch
from 50, to 100, 200, 450, 500, 550, 700, 850, 1000, and
the results are shown in Fig. 5 . It can be seen that un-
der ResNet50, the fluctuation of the data-free quantization
model is larger compared to that under ResNet18. Mean-
while, since the ResNet50 network is larger and more com-
plex, it requires larger training batches to reach the maxi-
mum point, which is why the maximum point of ResNet18
appears earlier than that of ResNet50. Meanwhile, same
as the warmup epochs in the above section, since the
ResNet18 network is smaller and simpler, it is easier to
complete the quantization, which is influenced by the rel-
evant hyperparameters.

5. Conclusion
This work studies the tuning robustness of existing data-

free quantization methods by empirically evaluating and
analyzing various hyperparameters settings. We find that
among settings of tuning, the learning rate, especially those
associated with the generation phase, are essential hyper-
parameters that have a more significant effect on the per-
formance of quantized models. Besides, some hyperparam-
eters can be adjusted within a specific range without sub-
stantially impacting the overall performance. We also noted
that the robustness of the QAT method is overall better than
PTQ. Moreover, for larger models or lower bit-with, the
ideal quantization are more challenging to achieve. In this
case, its tuning robustness also seems to be lower. The ideal
setting for epochs-like hyperparameters tends to get slightly
larger as the size increment of the quantized model. Our
study aims to evaluate the overall tuning robustness of the
current data-free quantization system, which significantly
fluctuates with different hyperparameter settings. While
giving recommended settings and analysis, we expect data-
free quantification methods with tuning robustness to ap-
pear in the future.
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