
CorrGAN:Input Transformation Technique Against Natural Corruptions

Mirazul Haque
UT Dallas

mirazul.haque@utdallas.edu

Christof Budnik
Siemens

christof.budnik@siemens.com

Wei Yang
UT Dallas

wei.yang@utdallas.edu

Abstract

Because of the increasing accuracy of Deep Neural Net-
works (DNNs) on different tasks, a lot of real times systems
are utilizing DNNs. These DNNs are vulnerable to adver-
sarial perturbations and corruptions. Specifically, natural
corruptions like fog, blur, contrast etc can affect the pre-
diction of DNN in an autonomous vehicle. In real time,
these corruptions are needed to be detected and also the
corrupted inputs are needed to be de-noised to be predicted
correctly. In this work, we propose CorrGAN approach,
which can generate benign input when a corrupted input
is provided. In this framework, we train Generative Adver-
sarial Network (GAN) with novel intermediate output-based
loss function. The GAN can denoise the corrupted input and
generate benign input. Through experimentation, we show
that up to 75.2% of the corrupted misclassified inputs can
be classified correctly by DNN using CorrGAN.

1. Introduction
Deep Neural Networks (DNNs) are being used in real-

time tasks such as object recognition, natural language pro-
cessing, speech processing, etc. Many of these tasks are
being used to create intelligent and autonomous systems.
Specifically, tasks like object detection are being used in au-
tonomous vehicles, mobile phones, and health diagnostics.
One common requirement of those systems is their need for
industrial-grade robustness to operate within safety bound-
aries regardless of environmental conditions.

The robustness of a DNN can be defined as the change
of DNN prediction if a minimal amount of perturbation is
added to the input. Significant number of works have been
performed to evaluate the robustness of DNNs through de-
vising adversarial attacks [1–3,10]. The generated adversar-
ial images for object recognition are synthesized by adding
perturbation to benign images. However, for real-time sys-
tems, devised adversarial examples can only be a threat if
they are represented through a printed image. Because of
this reason, the scope of adversarial attacks against real-
time systems becomes limited.

However, natural corruptions are not needed to be repre-
sented through a printed image. The natural corruptions can
be defined as the natural phenomenon that would degrade
the quality of the image captured by the real-time systems
for object recognition. Because of the noise added to the im-
ages due to these natural corruptions, the object recognition
model can mispredict the output. As these corruptions are
added to the image captured by real-time system’s camera,
these corruptions can be a larger threat for real-time systems
than synthesized adversarial inputs. On the manufacturing
shop floor, corruptions would lower the classification accu-
racy by causing a robot malfunction that can lead to damage
to equipments or even harm to humans.

During inference time, we can handle corrupted inputs in
two ways: input detection and input conversion. A substan-
tial amount of research has been performed to detect out-of-
distribution examples (e.g., naturally corrupted examples).
However, for a real-time system, detection is not enough
because systems like autonomous vehicles need correct pre-
dictions to function properly. Because of that reason, input
conversion is required for naturally corrupted examples to
correctly predict the output.

Current input conversion techniques [9] focus on gener-
ating inputs whose euclidean distance (in terms of pixels) is
nearest to the original benign inputs. However, decreasing
the euclidean distance between generated and original input
does not make sure that the predicted output of the object
recognition model would be correct. As we have seen ear-
lier from the adversarial attacks [1,10], because of minimal
input distance DNNs can mispredict the output.

Therefore, we propose CorrGAN1, which includes the
DNN intermediate output values into the loss function. Cor-
rGAN has two components. The first component is Noise
Classifier (NC), which differentiates between various types
of corruption. The second component is Generative Adver-
sarial Network (GAN), which converts the corrupted input
into a benign one. As different types of corruptions need
different GANs for benign input generation, the NC’s ob-
jective is to find the correct GAN for denoising. Through
evaluation, we find out that the denoiser successfully can

1The work has been performed during internship at Siemens.

convert up to 75.2% of the misclassified inputs to correctly
classified inputs. Also, we find that NC can achieve 97.47%
accuracy in predicting noise type.

2. Background and Related Works

2.1. Natural Corruptions

Corruption techniques [5] contain different visual cor-
ruption, which includes practical corruptions like fog, blur,
brightness etc. There are 19 different corruption types we
have used. For each corruption type, five corruption levels
are created from severity level one to five, resulting in a to-
tal of 95 different visual corruptions. The noise added to the
inputs by corruption techniques is humanly perceptible.

2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are genera-
tive models which have been used frequently to augment
different types of data like image, text, code, speech etc.
GANs mainly consist of two components. First component
is called generator G(·) and the other component is discrim-
inator D(·). The input x of the generator G(·) is a seed
sample (generally a noisy sample) and the output G(x) is
an in-distribution input (Input which belongs to the distri-
bution of training data). After generating the output to the
original seed, the test sample G(x) is sent to the discrimi-
nator. The discriminator D(·) is designed to distinguish the
generated test samples G(x) and the original in-distribution
training samples x. After training, the generator would gen-
erate more in-distribution inputs; correspondingly, the dis-
criminator would also be more accurate in distinguishing
original samples and generated samples. After being well
trained, the discriminator and the generator would reach a
Nash Equilibrium, which implies the generated test samples
are challenging to be distinguished from the in-distribution
samples. The loss function for a traditional GAN can be
referred as,
LGAN = ExlogD(x) + Exlog[1−D(G(x))]

2.3. Adversarial Sample Detection

For detecting adversarial samples, Hendrycks et al. [6]
propose a baseline to detect out-of-distribution samples us-
ing softmax value. Lee et al. [7] propose mahalanobis dis-
tance based confidence score using hidden feaures to detect
out-of-distribution and adversarial samples. GraN [8] de-
tects the out-of-distribution samples by using weight gradi-
ent values. Yap et al. [12] propose to use entropy of salient
maps to detect adversarial samples. However, for real time
systems, input detection is not enough, input conversion is
also needed.

3. Approach

In this section, first we discuss about the problem formu-
lation and then elaborate the approach.

3.1. Problem Formulation

CorrGAN is designed based on the paradigm of Gener-
ative Adversarial Networks (GANs), which was discussed
earlier (Section 2.2). As discussed earlier, GANs mainly
consist of a generator G(·) and a discriminator D(·). How-
ever, for the purpose of denoising, we consider that the in-
put x of the generator G(·) is a noisy corrupted image and
the output G(x) is a perturbation. Our objective is to gen-
erate denoised input x + G(x) after applying the generated
perturbation to the noisy input.

For the purpose of denoising, we need to create a sam-
ple that not only belongs to the same data distribution but
also is similar to the original image. Also, we need to en-
sure that the generated denoised example would have simi-
lar predictions as original image. Decreasing only the pixel
difference between original and generated image might not
be sufficient for that [9, 11].

For example, let’s assume that we want to generate a
sample x + G(x), where the euclidean pixel difference be-
tween x+G(x) and original image xorig is δ, where δ → 0.
However, for many scenarios, the value of δ won’t be 0,
and there will be a small pixel difference between two im-
ages. As we know from the adversarial attacks that a small
pixel difference can be cause for wrong prediction [1], the
challenge about small input pixel difference is needed to be
addressed.

To address this challenge, we propose to include the cer-
tainty of the DNNs into the loss function [7]. It has been
observed that hidden states of a DNN can be analyzed to de-
cide model certainty. Therefore, we propose to include the
difference between hidden layer outputs of original image
and generated image in the loss function. Also, to denoise
the corruption, we propose to generate perturbation instead
of generating benign input directly. The benign input can
be generated by adding perturbation with corrupted input.
So the total loss function would be,

Ltotal = LGAN + ||(x+ G(x))− xorig||+ ||Hid(x) +
G(x))−Hid(xorig)||

Hid represents the hidden layer output values of DNN.
However, training a single G(·) is not enough to denoise

all types of noises because the effect of different noises on
benign inputs is generally different. For example, the per-
turbation needed to denoise low contrast images would not
be similar to the perturbation needed to denoise images af-
fected with glass blur noise. Because of that reason, we
need to train different G(·) for different noises. However,
given a noisy image, it would be challenging to know which

G(·) to use for denoising. Therefore, we need to create a
noise classifier too.

3.2. Overview

There are three components of the approach: Training
the Generator, Training the Noise Classifier and, Architec-
ture Overview.

3.2.1 Training the Generator

As mentioned earlier, to train the generator, we use Eu-
clidean distance between hidden states of corrupted and be-
nign inputs, along with Euclidean distance between pixel
values of corrupted and benign inputs. We consider specific
hidden state layers in this scenario. For example, ResNet-
18 models [4] has total 18 residual blocks in model archi-
tecture. These 18 blocks are divided into four groups. We
consider outputs of each group to include in loss function.
Therefore, we define a hidden state values Hid as,

Hid(x) = HidG1
(x) + HidG2

(x) + HidG3
(x) +

HidG4
(x)

where x is the input, GN is the group number input.

3.2.2 Training the Noise Classifier

Noise Classifier (NC) is a classification model, which can
predict which type of noise is added to the input given the
input. Each noise adds a specific type of pattern to the be-
nign inputs. For example, the snow corruption would add
specific white patches to the input. Hence, a convolution-
based classifier model would be able to detect the specific
noise if the model is trained.

3.2.3 Architecture Overview

Figure 1 represents the overview of CorrGAN. If an input
is rejected by the OOD detection system, it will be sent to
Noise Classifier. The NC will predict which type of corrup-
tion is present in the input. Depending on the NC output, the
denoiser GAN that is specified for the corruption is used to
denoise the corrupted input.

4. Evaluation
We evaluate CorrGAN based on two perspective:
1. What is the increase accuracy by CorrGAN

against baseline?
2. What is the effectiveness of Noise Classifier?

4.1. Experimental Setup

Datasets. We use CIFAR-10 dataset for the evaluation
of CorrGAN. The dataset has 50,000 training images and

Figure 1. Working mechanism of CorrGAN

Brightness Fog
Corruption Type

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

CorrGAN
Baseline

Figure 2. Comparison of Accuracy of CorrGAN generated inputs
and Baseline generated input

10,000 test images. Each type of corruption is added to the
training and testing images with various scales.

Models. We have used ResNet-18 model [4] for the ex-
perimentation.

Baseline. We use Defense-GAN [9] technique as base-
line.

Threat Model. In this work, we consider that we already
know an input has been predicted incorrectly. As we men-
tioned in related works, multiple works has been performed
about adversarial sample detection. Once the sample is de-
tected, then the sample is fed to Noise Classifier (NC), and
later to Generator model.

4.2. Increasing Accuracy

We show the effectiveness of CorrGAN through two
types of corruptions: Fog and Brightness. Both natural cor-
ruptions are some prevailing threats to industrial manufac-
turing processes.

First, we train one GAN for each type of corruption. The

training data consists of 250,000 images. Similarly we train
two separate defense-GANs for each type of corruption.

For testing, we first find out misclassified input by DNN
(for each type of corruption) from 50,000 test inputs, and
those selected inputs are fed to CorrGAN and baseline. Fig-
ure 2 shows the result. It can be noticed that in both cases,
the accuracy of CorrGAN generated inputs is more than
10% higher than baseline generated inputs.

4.3. Noise Classifier Accuracy

For testing the NC, we use a ResNet-18 model. The
classes of this model represent different corruptions (fog
and brightness in this scenario). We trained the ResNet-
18 model given 250,000 corrupted inputs for each label and
tested on 100,000 test samples. The model performs signif-
icantly well by achieving 97.47% accuracy.

5. Application
Object recognition is an important integral part of en-

suring a safe operation for industrial manufacturing. In
the future manufacturing shop floor, Self-Driving Vehicles
(SDVs) and Autonomous Mobile Robots (AMRs) will be
utilized to allow for more flexibility and increased produc-
tivity. Camera systems are supposed to monitor and detect
the autonomous machines and humans operating in an un-
structured and fenceless environment. Their detection will
ensure to avoid any harm to their human co-workers by cal-
culating their distances to each other.

The prerequisite for the safety of such an AI-controlled
manufacturing system is the robustness to recognize the au-
tonomous machines and workers on the shop floor. The de-
tection by the camera system can, however, be hampered
by natural phenomena that can corrupt the vision reception.
On a factory floor, natural corruptions can include fog from
steam sanitizing and disinfecting fogging or smoke as well
as brightness from changing light conditions. Those natu-
ral corruptions add noise to the image, which needs to be
identified and denoised.

Thus, the robustness of object detection of autonomous
vehicles and humans on the manufacturing shop floor has
become a major concern that needs to be addressed in order
to become a widespread application in industry.

6. Conclusion
In this work, we propose CorrGAN, which uses inter-

mediate output layers of DNN to generate benign outputs
given corrupted inputs. We propose an architecture, which
first identifies the type of corruption added to the input and
then classifies it first. Next, a denoiser GAN would convert
the corrupted input to benign input. Through evaluation,
we find that CorrGAN can generate more accurate benign
inputs than baseline technique.

References
[1] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya,

Yuankai Zhang, Micah Sherr, Clay Shields, David
Wagner, and Wenchao Zhou. Hidden Voice Com-
mands. In Proceedings of the USENIX Security Sym-
posium, pages 513–530, 2016.

[2] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu,
and Wei Yang. Nicgslowdown: Evaluating the Effi-
ciency Robustness of Neural Image Caption Genera-
tion Models. arXiv preprint arXiv:2203.15859, 2022.

[3] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei
Yang. Ilfo: Adversarial Attack on Adaptive Neural
Networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 14264–14273, 2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[5] Dan Hendrycks and Thomas Dietterich. Benchmark-
ing Neural Network Robustness to Common Corrup-
tions and Perturbations. Proceedings of the Interna-
tional Conference on Learning Representations, 2019.

[6] Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136,
2016.

[7] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo
Shin. A Simple Unified Framework for Detecting Out-
of-distribution Samples and Adversarial Attacks. Ad-
vances in Neural Information Processing Systems, 31,
2018.

[8] Julia Lust and Alexandru Paul Condurache. GraN:
An Efficient Gradient-norm Based Detector for Ad-
versarial and Misclassified Examples. arXiv preprint
arXiv:2004.09179, 2020.

[9] Pouya Samangouei, Maya Kabkab, and Rama Chel-
lappa. Defense-gan: Protecting Classifiers Against
Adversarial Attacks using Generative Models. arXiv
preprint arXiv:1805.06605, 2018.

[10] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing Properties of Neural Networks.
arXiv preprint arXiv:1312.6199, 2013.

[11] Qiaojing Yan and Wei Wang. DCGANs for Image
Super-resolution, Denoising and Debluring. Advances
in neural information processing systems, pages 487–
495, 2017.

[12] Dian Ang Yap, Joyce Xu, and Vinay Uday Prabhu. On
Detecting Adversarial Inputs with Entropy of Saliency
Maps. CV-COPS, IEEE CVPR, 2019.

	. Introduction
	. Background and Related Works
	. Natural Corruptions
	. Generative Adversarial Networks
	. Adversarial Sample Detection

	. Approach
	. Problem Formulation
	. Overview
	Training the Generator
	Training the Noise Classifier
	Architecture Overview

	. Evaluation
	. Experimental Setup
	. Increasing Accuracy
	. Noise Classifier Accuracy

	. Application
	. Conclusion

