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Abstract

One popular group of defense techniques against adver-
sarial attacks is based on injecting stochastic noise into the
network. The main source of robustness of such stochas-
tic defenses however is often due to the obfuscation of the
gradients, offering a false sense of security. Since most of
the popular adversarial attacks are optimization-based, ob-
fuscated gradients reduce their attacking ability, while the
model is still susceptible to stronger or specifically tailored
adversarial attacks. Recently, five characteristics have been
identified, which are commonly observed when the improve-
ment in robustness is mainly caused by gradient obfusca-
tion. It has since become a trend to use these five char-
acteristics as a sufficient test, to determine whether or not
gradient obfuscation is the main source of robustness. How-
ever, these characteristics do not perfectly characterize all
existing cases of gradient obfuscation, and therefore can
not serve as a basis for a conclusive test. In this work,
we present a counterexample, showing this test is not suf-
ficient for concluding that gradient obfuscation is not the
main cause of improvements in robustness.

1. Introduction
Deep Neural Networks (DNN) achieved astonishing re-

sults in the last decade, resulting in breakthroughs in pro-
cessing images, videos, speech, audio, and natural lan-
guage [15]. These networks have the potential to serve as
the core of solutions to many real-world problems. How-
ever, it was discovered that a small adversarial perturbation
in pixel intensities can cause a severe drop in the perfor-
mance of DNNs, or worse, make them give a specific false
prediction desired by the adversary [9, 24]. This can have
severe consequences in applications like autonomous ve-
hicles, healthcare, etc. Therefore, it is very important to
design defense mechanisms to make DNNs more robust to
adversarial attacks, as well as to thoroughly understand the
vulnerabilities of a certain model to these attacks.

Numerous approaches have been proposed to defend

against adversarial attacks. Some of the main defense cate-
gories are adversarial training [14, 18, 27, 29] , certified ro-
bustness [5, 6, 23] and gradient regularization [4, 8, 10, 11,
21]. Another popular category of adversarial defenses is
noise injection [7, 13, 17, 20], where some form of stochas-
tic noise is introduced, in an attempt to increase robustness.

Most of the popular adversarial attack methods exploit
the network’s differentiability to craft the sought adversar-
ial examples [3, 9, 18, 19, 24]. Introducing stochastic noise
usually weakens these attacks by obfuscating the gradi-
ents, creating only apparent robustness. Athalye et al. [2]
showed that Expectation over Transformation (EoT), a sim-
ple method for gradient estimation, suffices to unveil the
obfuscated gradients in those scenarios. In other words, af-
ter using the EoT gradient estimation, many defenses be-
come ineffective. Furthermore, five characteristics have
been identified by Athalye et al., which commonly occur
when the improvement in robustness is mainly caused by
gradient obfuscation. It has since become a trend to use
these five characteristics as a sufficient test, to determine
whether or not gradient obfuscation is the main source of
robustness. We empirically show by a counterexample that
these characteristics do not characterize all existing cases of
gradient obfuscation. Therefore, we argue that the gradient
obfuscation checklist test gives a false sense of security.

2. Detecting Gradient Obfuscation
We list the five common characteristics, as observed by
Athalye et al. [2], in the following.

1 One-step attacks perform better than iterative attacks.

2 Black-box attacks are better than white-box attacks.

3 Unbounded attacks do not reach 100% success.

4 Random sampling finds adversarial examples.

5 Increasing distortion bound does not increase success.

In fact, Athalye et al. also mentioned that the above
list may not perfectly characterize all the cases of gra-
dient obfuscation. Despite that, it has recently become



a trend to use these five characteristics as criteria of a
“checklist“, to determine whether or not the success of a
stochastic defense is mainly caused by obfuscating the gra-
dients [1, 7, 12, 13, 16, 17, 20, 28]. As a result, any given de-
fense is claimed to provide the robustness beyond gradient
obfuscation, if none of these five characteristics is observed.

In this work, we empirically show that such a claim can
not be made. Our empirical study unveils a counterexam-
ple to the claim. In particular, we show that the Parametric
Noise Injection (PNI) defense [20], which does not exhibit
any of the five characteristics, is still vulnerable to attacks
with the EoT gradient estimation. Therefore, its improve-
ment in robustness is mostly based on the obfuscation of
gradients. This indicates that the five characteristics are in-
sufficient to be used to determine the contribution of gradi-
ent obfuscation to robustness, in general.

3. Parametric Noise Injection (PNI)
In this section we give an overview of the PNI [20] ad-

versarial defense technique.
This method injects noise to different components or lo-

cation within the DNN in the following way:

ṽi = fPNI(vi) = vi + αi · η,
η ∼ N (0, σ2),

σ =

√
1

N

∑
i

(vi − µ),

(1)

where vi is an element of a noise-free tensor v, and v
represents the input/weight/inter-layer tensor. Next, µ is
the estimated mean of v, and η is the additive noise term,
which is a random variable following the Gaussian distri-
bution. Finally, αi is the coefficient which scales the mag-
nitude of the injected noise, and it is a learnable parameter
which is optimized for the network’s robustness. The de-
fault setting in [20] is to apply PNI to weight tensors of
convolutional and fully-connected layers (denoted as PNI-
W) , and to share the element-wise noise coefficient αi for
all elements of a specific weight tensor (denoted as layer-
wise). We also evaluate the setting where the PNI is ap-
plied to tensors which are outputs of the convolutional and
fully connected layers (denoted as PNI-A-a), because it has
also shown good results [20]. Furthermore, we also explore
sharing αi just for different channels inside the tensor (de-
noted as channelwise), or having different αi for different
elements (denoted as elementwise).

4. Experiments
4.1. Experimental setup

Adversarial attack strategies. In general, adversarial
attacks exploit the differentiability of the network f(x)

and its prediction loss L(f(x), l), with respect to the in-
put image x, where l is the label. The attack aims to
slightly modify the input x to maximize the prediction
loss for the correct label l. To craft stronger adversarial
samples, the fast gradient sign method (FGSM) [9] is re-
peated K times with a step size of α, followed by a projec-
tion to an ϵ hypercube around the initial sample x, x̂k =
Πx,ϵ

[
x̂k−1 + α sgn(∇xL(f(x̂k−1), l))

]
. This is known as

the projected gradient descent (PGD-K) attack [18]. Fur-
thermore, the expectation-over-transformation (EOT) gradi-
ent estimation is usually more effective when dealing with
noise inside the network, because of common gradient ob-
fuscations [2]. This can be viewed as using PGD [18]
with the proxy gradient, Eq(z)

[
∇xL(f(x̂k−1, z), l)

]
≈

1
T

∑T
t=1 ∇xL(f(x̂k−1, zt), l) , where q(z) represents the

distribution of the noise z ∼ q(z) injected into the random-
ized classifier f(x, z).
Adversarial vulnerability metrics. In order to evaluate ad-
versarial robustness, we craft adversarial examples for each
image in the validation set with the aforementioned attacks,
and test the model’s accuracy on those adversarial exam-
ples. When crafting each adversarial example, we initialize
the attack’s starting point randomly, inside the ϵ−hypercube
centered on x. We restart this procedure R times to find the
strongest attack and always set the step size α = 1.
Dataset. For conducting experiments, we use the ILSVRC-
2012 ImageNet dataset, containing 1.2M training and
50000 validation images grouped into 1000 classes [22].
Adversarial training. PNI is trained with the help of ad-
versarial training [20]. Since we use the more computation-
ally demanding ImageNet dataset, we employ the recent ef-
ficient adversarial training procedure described in [27]. Fol-
lowing [27], the step sizes during adversarial training are
α = { 2.5

255 ,
5

255} for ϵ = { 2
255 ,

4
255}, respectively. The mod-

els are evaluated for the same ϵ used during the training.
Baselines. For all experiments, the baseline is the original
network, without the PNI stochasticity. In a way, this base-
line serves as an ablated model. A significant improvement
over this baseline is necessary to claim any improvement
in robustness. More importantly, the same must hold even
with EoT gradient estimation so as to ensure that the robust-
ness is not mainly due to gradient obfuscation.
Implementation details. For the main experiments, we use
the ResNet architecture, where every convolutional layer
has been extended with the PNI, as described in (1). More
specifically, we use the ResNet-50, as it provides a good
trade-off between performance and computational com-
plexity, and we train it from scratch. We use 100 randomly
selected classes, because of the high computational demand
of the ImageNet dataset, adversarial training, and adversar-
ial evaluation altogether. During training, we use hyperpa-
rameters recently proposed in [25], which have shown to
work well for ResNets [26]. We train for 150, because it



turns out to be sufficient in this setting with 100 classes.
Furthermore, we also preform experiments on the DeiT-

S transformer [25], since transformer architectures are be-
coming very popular and relevant in computer vision. The
DeiT-S has the parameter count and computational com-
plexity similar to a ResNet-50. We extend the fully-
connected layer, just after the activation (in the MLP block),
with the PNI on its weights (PNI-W-fc2). This experiment
also analyzes the case of less aggressive noise, since PNI is
not used in all parametrized blocks of the transformer. The
initial experiments, like described in the case of ResNet,
did not perform as well, probably because of the data hun-
gry nature of transformers. Therefore, we use the whole
ImageNet dataset for this experiment. However, because
of high computational demand, we start from pre-trained
models on ImageNet, like the ones described in [25]. Dur-
ing the fine-tuning, which lasts for 20 epochs, we use the
AdamW optimizer and a cosine scheduler with a learning
rate of 10−5, which gradually decays to 10−6.

During every evaluation, we restart the attack 5 times to
construct a stronger attack and we use 10 steps for the PGD
attack (PGD-10). The number of samples for the EoT esti-
mation is 25 in the case of ResNet50 on 100 classes (EoT-
25), and 5 in the case of DeiT-S on all 1000 classes (EoT-5).

4.2. Results

In Table 1 we see that inserting various forms of PNI im-
proves the adversarial robustness of both the ResNet50 and
DeiT-S over the respective baselines, for both FGSM and
PGD-10 attacks. In contrast, when EoT is used to estimate
the gradients during the attacks, the effect of PNI is even
detrimental, weakening the desired robustness. Note that
being effective against regular PGD, but ineffective against
PGD with EoT, is clear evidence for gradient obfuscation
being the main source of robustness. Rather than strength-
ening the robustness of the visual features, such defenses
rather make it harder to find the adversarial example with
gradient-based attacks. EoT however allows to uncover the
adversarial direction by averaging multiple noisy gradient
samples, and exposes the original vulnerability of the net-
work. Note that the results of Table 1 (a) and (b) cannot be
directly compared, due to the differences in the following
aspects: number of classes, number of EoT samples, net-
work backbones, and the training protocols. Nevertheless,
both (a) and (b) support our conclusions.

5. Conclusion
In this paper, we reflect on the problem of gradient obfus-

cation in the case of stochastic defense techniques against
adversarial attacks. Athalye et al. [2] observed five com-
mon characteristics, when the improvement in robustness is
mainly caused by gradient obfuscation. They also stated
that “these behaviors may not perfectly characterize all

Table 1. Robustness of models with and without PNI. Inserting
various forms of PNI improves the adversarial robustness of both
the ResNet50 and DeiT-S over the respective baselines, for both
FGSM and PGD-10 attacks. In contrast, when EoT is used to es-
timate the gradients during the attacks, the effect of PNI is even
detrimental, weakening the desired robustness. This is a clear sign
of gradient obfuscation being the main source of robustness.

(a) ResNet50 trained from scratch with PNI, on 100 ImageNet classes.
Accuracy ↑

Clean
samples

FGSM
attack

FGSM
attack

(EoT−25)

PDG−10

attack

PDG−10

attack
(EoT−25)

Adversarial training from scratch with ϵ = 2
255

ResNet50 82.90% 72.24% 65.44%

ResNet50 + PNI-W
(layerwise)

83.16% 77.60% ↑ 71.30% ↓ 70.26% ↑ 62.70% ↓

ResNet50 + PNI-W
(channelwise)

84.50% 77.62% ↑ 70.20% ↓ 68.92% ↑ 60.02% ↓

ResNet50 + PNI-W
(elementwise)

83.18% 76.00% ↑ 69.96% ↓ 68.74% ↑ 61.70% ↓

ResNet50 + PNI-A-a
(layerwise)

85.06% 75.52% ↑ 69.16% ↓ 66.74% ↑ 59.04% ↓

ResNet50 + PNI-A-a
(channelwise)

85.20% 75.38% ↑ 69.12% ↓ 66.64% ↑ 59.08% ↓

Adversarial training from scratch with ϵ = 4
255

Res50 78.12% 61.72% 50.94%

ResNet50 + PNI-W
(layerwise)

82.02% 71.24% ↑ 60.64% ↓ 60.60% ↑ 44.50% ↓

ResNet50 + PNI-W
(channelwise)

82.54% 72.68% ↑ 60.36% ↓ 60.38% ↑ 42.62% ↓

ResNet50 + PNI-W
(elementwise)

79.76% 72.42% ↑ 62.86% ↑ 63.40% ↑ 48.00% ↓

ResNet50 + PNI-A-a
(layerwise)

82.08% 67.32% ↑ 56.90% ↓ 55.12% ↑ 42.64% ↓

ResNet50 + PNI-A-a
(channelwise)

81.92% 67.90% ↑ 57.84% ↓ 55.92% ↑ 43.34% ↓

(b) DeiT-S fine-tuned with PNI, on all 1000 ImageNet classes.
Accuracy ↑

Clean
samples

FGSM
attack

FGSM
attack

(EoT−5)

PDG−10

attack

PDG−10

attack
(EoT−5)

Adversarial fine-tuning with ϵ = 2
255

DeiT-S 71.61% 53.27% 42.33%

DeiT-S + PNI-W-fc2
(layerwise)

73.50% 58.06% ↑ 54.40% ↑ 44.84% ↑ 40.60% ↓

DeiT-S + PNI-W-fc2
(channelwise)

72.88% 57.02% ↑ 53.58% ↑ 44.47% ↑ 40.96% ↓

DeiT-S + PNI-W-fc2
(elementwise)

72.51% 56.66% ↑ 53.49% ↑ 44.49% ↑ 41.08% ↓

Adversarial fine-tuning with ϵ = 4
255

DeiT-S 65.04% 39.98% 27.24%

DeiT-S + PNI-W-fc2
(layerwise)

68.77% 47.12% ↑ 41.56% ↑ 31.07% ↑ 25.90% ↓

DeiT-S + PNI-W-fc2
(channelwise)

67.40% 45.07% ↑ 40.78% ↑ 30.22% ↑ 26.11% ↓

DeiT-S + PNI-W-fc2
(elementwise)

67.02% 44.24% ↑ 40.61% ↑ 29.99% ↑ 26.13% ↓

cases of masked gradients”. Despite this, it has become a
trend to claim that obfuscated gradients are not the main
source of improvements in robustness, if none of these five
characteristics hold true [7, 13, 20]. We refute such claims
on a large-scale dataset by providing a counterexample.

In particular, we have shown that the popular Parametric
Noise Injection (PNI) exploits gradient obfuscation to im-
prove robustness, despite of passing the five characteristics
checklist test. The exploitation of the gradient obfuscation
is unveiled based on the following observations:

• PNI passes the five characteristics checklist test [20].
• Adding PNI improves the adversarial robustness to-

wards FGSM and PGD attacks.



• Adding PNI is detrimental for robustness towards at-
tacks using gradients estimated with EoT.

This counterexample allows us to conclude that the gradi-
ent obfuscation checklist test is not sufficient to determine
whether or not the gradient obfuscation is the main source
of robustness improvements. Therefore, only using the gra-
dient obfuscation checklist test gives us a false sense of se-
curity. Needless to say, the provided counterexample is suf-
ficient to make the above conclusion. Henceforth, we rec-
ommend to include EoT-based attacks in the gradient obfus-
cation test. Please note that even with the EoT criterion, not
all cases of obfuscated gradients may be perfectly covered.
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