
A. Implementation Details

Model Architectures Each model consists of 3-4 resid-
ual layers with pre-activation residual blocks, which use
an identity mapping as the shortcut connection. ResNet-
34 consists of 4 residual layers with 2 convolution opera-
tions per residual block. ResNet-50 and ResNeXt-29 con-
sist of 4 and 3 residual layers respectively, and both have
3 convolution operations per residual block. Additionally,
ResNeXt-29 has a bottleneck width of 4 and cardinality of
32. In this case, ReScaler is adapted to instead work with
the grouped convolution operations of ResNeXt, by instead
applying a scalar weight to each group. As a result, the
number of ReScaler parameters for ResNeXt scales with
cardinality.

Attack Setup For data poisoning attacks, we assume that
the attacker has a poisoning budget of 1% of the size of the
whole training set and a the perturbation budget ✏ = 16 as
measured by l1-norm. For clean-label backdoor attacks,
we allow a poisoning budget of 1% with trigger patches of
size 6⇥ 6 with a perturbation budget of ✏ = 16 for ResNet-
18, ResNet-34 and RexNeXt-29, and ✏ = 32 for ResNet-50.

Moreover, we also specify the attack settings here in or-
der to better clarify the attacker’s capacity. That is, for
CP and BP attacks, the attacker is allowed to extract fea-
tures from several layers of the network when crafting poi-
sons, as we find that it benefits the most number of suc-
cessful attacks. When poisoning these models, all batch-
normalization layers are frozen and only the last layer is
finetuned on the poisoning data set. We run these crafting
algorithms for the default number of iterations as specified
by the authors. Additionally, we exclude the poison images
from data augmentations, as we find this reduces the overall
attack efficacy. When finetuning the last layer, we use SGD
with a step size of 0.01 for 35 epochs.

For clean-label attacks in our evaluation, we focus on the
transfer learning setting in which existing attacks are most
effective. Specifically, we assume that the attacker has the
full knowledge of a model’s pre-trained weights when craft-
ing poisons. Afterward, when the defender finetunes the
model on the poisoned data set, only the last fully connected
layer is trained, and all other model weights are frozen.

We apply ReScaler onto each successfully poisoned
model, and perform the 1-gradient step update described in
Section 3. We set the step size ↵ = 1.0, and set ✏ as 0.15
and 0.03 for ResNet-34/ResNet-50 and ResNeXt-29 respec-
tively unless otherwise specified.

Figure 2 setup For all models, the ✏ values increase lin-
early from left to right. For ResNeXt-29, ✏ increases be-
tween the values of 0.01 and 0.05, with a step size of 0.01.
For ResNet-34 and ResNet-50, ✏ increases between the val-

ues of 0.05 and 0.25, with a step size of 0.05. For each value
of ✏, the ASR and validation error are calculated on 3 ran-
domly sampled models from each attack setting applying
with ReScaler. Points are removed if there is no change
in ASR or validation error.

B. Related Work

Poisoning and Backdoor Attacks. Existing poisoning
and backdoor attacks alter models by injecting poisoning
samples into the training data. Poisoning attacks optimize
perturbations on a set of poisoning samples in order to mis-
lead the model on some specific target images during in-
ference. Besides Feature Collision (FC), Convex Polytope
(CP) and Bullseye Polytope (BP) introduced in the former
section, there are some other poisoning attack strategies
formulating it into a bilevel optimization problem [9, 14].
Backdoor attacks alter the model on some specific trigger
patterns at test time. They can be roughly divided into
clean-label [20,24] and dirty-label attack [11] ones, accord-
ing to whether or not the maliciously poisoning samples
keep label-consistency with their original clean ones. Be-
sides CLBD and HTBD mentioned before, there exist more
dirty-label attacks. Typical trigger patterns can be either a
fixed tiny patch or other dynamic patterns. BadNet [11] and
Blend [5] propose to apply a typical tiny patch. SIG [3]
adopts a more complex form, e.g., sinusoidal strips. Re-
cent study shows that natural reflection [19] can also be
conducted as a backdoor attack.

Existing defense methods work either post-poisoning or
during training. The post-poisoning defenses usually detect
and remove the poisoned data from training set [4, 23]. The
repair-based methods adopt fine-tuning, fine-pruning [17]
or other training strategies [18, 26] to directly erase the ma-
licious impacts caused by the backdoor triggers, while si-
multaneously maintain the model’s overall performance on
clean data. Mode connectivity repair is also proposed to re-
move backdoor related neural paths [32]. However, these
defense methods can hardly defend against clean-label at-
tacks. Adversarial poisoning [8] proposes to extend the ad-
versarial training framework to defend against (during train-
ing) poisoning and backdoor attacks, yet results in a sub-
stantial computational cost.

Residual Connections. Residual modules are widely ap-
plied along with the increasing depth of DNNs, e.g.,
ResNet, WideResNet [30], DenseNet and ResNeXt. It of-
ten uses an identity shortcut to prevent gradient vanishing.
However, recent studies find that the information flow be-
tween residual blocks and their identity shortcuts (during
forward and backward propagation) hints some insightful
phenomenon. Bachlechner et al. propose the ReZero [2]
operation to re-assign the weight of residual block as zero,
which could further improve the model convergence. Wu et



al. [27] show that downweighting residual block gradients
during backward propagation could improve the transfer-
ability of generated adversarial examples. The above stud-
ies motivate us to explore the residual modules in poisoning
and backdoor attacks.

C. Additional Analysis

C.1. Transferability Discussion

We explore the transferability of learned ReScaler
weights between different poisoned models as well as
between different attacks. Specifically, we first learn
ReScalerweights for a particular target image and attack,
then we apply these weights onto another poisoned model
which corresponds to a different target image or attack. If
these weights are transferable, we would expect the trans-
fer attack success rate, or the attack success rate of a poi-
soned model after these learned weights have been applied,
to be low. In order to effectively transfer these weights
across models, we modify the 1-gradient step method dis-
cussed in Section 3.2. Specifically, we change the objec-
tive to instead minimize the cross-entropy loss between the
target image and its ground-truth class, thus the learned
ReScaler weights will have the effect of sending the tar-
get image to its ground-truth class. Additionally, we also
increase ✏ to 0.3 and increase the number of optimization
steps to 100, which leads to consistently better results.

Transferability among different poisoning sets. In Fig-
ure 3, we first train the ReScaler weights for a subset of
ResNet-34 FC poisoned models, then transfer them to other
FC poisoned models (denoted as FC �! FC), as well as for
BP (denoted as BP �! BP). We see that a majority of these
weights do transfer in both settings, resulting in a significant
decrease in the transfer attack success rate. Moreover, we
observe that the transferability among BP poisoned mod-
els is generally more effective and the transfer attack suc-
cess rate is lower. We also notice a correlation between the
transferability of the weights learned on a poisoned model
and the poison-class confidence of that poisoned model. In
Figure 4, we see that models with target images that have
the highest initial poison-class confidences tend to yield the
lowest transfer attack success rates in both the FC and BP
settings. This shows that training on models which have
target images more strongly embedded in the poison class
generally yields ReScaler weights with the more effec-
tive transferability to other poisoned models.

Transferability among different attack strategies. In
Figure 5, we train ReScaler weights on FC poisoned
models, then measure the transfer attack success rate on BP
poisoned models (denoted FC �! BP), and also from BP
to FC (denoted BP �! FC). We see that in both cases, the

Figure 3. Transferability of ReScaler among the FC and BP
poisoning sets. The transfer attack success rates are evaluated
on the larger set of FC/BP poisoned models after applying with
ReScaler, which are trained on their randomly sampled 50
FC/BP attacked models respectively. ReScaler transfers well
across different poisoning sets.

Figure 4. Correlation between transfer attack success rate and
target image poison-class confidence for FC and BP poisoned
ResNet-34 models. The higher the poison-class confidence, the
lower the transfer attack success rate. The correlation indicates
that training ReScaler on more strongly poisoned models en-
hances the transferability.

transfer attack success rates are comparable to the setting
in Figure 3, suggesting that ReScaler weights are effec-
tive at providing a decent defense even when applied onto
models poisoned with a different attack strategy.

Overlap similarity as an indicator for transferability.

We show that the degree of transferability from a poisoned
model to some other poisoned model can be reasonably
attributed to the similarity of their individual ReScaler
weights. Given some poisoned model mi and target image



Figure 5. Transferability of ReScaler between FC and BP at-
tacks, which is evaluated on a subset of 50 ResNet-34 poisoned
models for each setting. ReScaler transfers well across differ-
ent attack strategies.

ti, ReScaler yields some set of scalar weights wi. We
measure the overlap similarity between wi and some other
wj in the following manner:

sim(wi,wj) =
kmin(wi,wj)k
kmax(wi,wj)k

, for wi,wj 6= 0, (4)

where min and max are element-wise minimum and max-
imum operators respectively. This similarity achieves a
maximum value of 1 when wi = wj , and a minimum
value of 0 if min(wi,wj) = 0, i.e., either wi,k or wj,k

equals 0 for all element-wise values w⇤,k. We first compute
ReScaler weights wj for each ResNet-34 FC poisoned
model mj . For plotting purposes, we choose ReScaler
weights w1,w2,w3 for 3 random poisoned FC models such
that their corresponding target images t1, t2, t3 have a high
poison class confidence. In Figure 6, we plot the over-
lap similarity for each of w1,w2,w3 and all other mod-
els with weights wj on the x-axis. On the y-axis, we
plot the poison class confidence for target images tj after
each of w1,w2,w3 has been applied to mj . We see that
ReScaler weights w1,w2,w3 are much more likely to
reduce the poison-class confidence of a poisoned model mj

with weights wj if sim(wi,wj) is sufficiently high. In par-
ticular, we see that overlap similarities below 0.6 are gener-
ally correlated with higher poison class confidences, while
those above 0.6 are correlated with lower poison class con-
fidences. This provides an explanation for the transferabil-
ity of learned ReScaler weights among poisoned models,
and also suggests a stronger point – that our defense is ca-
pable of detecting and dampening a common set of features
shared among many poisoned models.

Figure 6. Overlap similarity VS poison confidence for a subset of
target images, where the models apply the ResNet-34 architecture
and are poisoned using the FC attack. We observe that the overlap
similarity is correlated with the poison-class confidence.

C.2. Analysis

In this section, we analyze properties of ReScaler. We
first show that learned ReScaler weights are similar even
when learning to send a particular target image into arbi-
trary classes. We then discuss how learned ReScaler
weights for the target image of some poisoned model can
effectively transfer to its set of training poisoning images.

ReScaler weights are independent of class. In Figure
7, we use overlap similarity to compare the ReScaler
weights for sending a particular target image into multi-
ple different classes (denoted as one target image �! dif-
ferent classes). In particular, we see that the weights for
sending a target image into arbitrary classes are relatively
similar, suggesting that ReScaler learns a common set of
weights needed to ‘un-poison’ a target image and send it
into any class. We also show that ReScaler weights do
not depend on the poison class of the target images they
are applied onto. In Figure 7, we use overlap similarity
to compare the ReScaler weights for sending different
target images from the same poisoning class back to their
own ground truth class (denoted as different target images
�! same class). We see that there is generally less over-
lap among these ReScaler weights, further suggesting
that ReScaler is independent of the poison class of target
images and learns critical weights that are needed to ’un-
poison’ these models.

ReScaler transfers effectively to training poisoning

images. In cases where ReScaler is able to success-
fully defend against against a poisoning attack, we find that
these weights are also successful at reducing the poisoned



Figure 7. Overlap similarity among ReScaler for sending the
same target image into different classes and sending different tar-
get images into the same class. For the first setting, we choose a
subset of 5 FC poisoned models and send each model’s target im-
age into the remaining 9 classes. In the second setting, we sample
9 FC poisoned models with target images from each of 5 random
poison classes, and learn weights to send those target images back
to their ground truth class.

model’s accuracy on the clean-label set of poison training
images to below 10%, while the accuracy on the clean sub-
set of the training set remains largely unaffected. This pro-
vides an additional explanation for the efficacy of our ap-
proach in reversing the effects of poisoning attacks across
numerous settings.

C.3. Saliency Maps of Target and Poisoning Images

We use saliency maps to investigate the effect of
ReScaler on the prediction of both a target image and
its corresponding poisoning training images. In particu-
lar, we visualize the salient features for the prediction of
the target image using the base model (i.e., a standard un-
poisoned model), the poisoned model, and the defended
model (i.e., the poisoned model with ReScaler applied
onto it). We present these results in the first rows of Fig-
ures 8, 9 and 10, respectively. We observe that the salient
features for the prediction of the target image using the poi-
soned model tend to differ significantly from those of the
base model. Specifically, we notice that after poisoning, the
target image’s salient features tend to shift towards a small
number of highly influential points. We also see that af-
ter ReScaler has been applied, the target image’s salient
features more closely resemble that of the base model. This
provides an explanation for how our defense is able to suc-
cessfully counteract the effect of poisoning and allow the
model to correctly classify the target image.

We also expand upon the finding in Section C.2, which
discusses how ReScaler weights effectively transfer to
the poisoning training images that correspond to a partic-

ular target image. In particular, we randomly sample some
poisoning training images that correspond to each target im-
age, and investigate the salient features for the prediction of
these images using both the poisoned and defended model.
We present these results for each target image in the last
three rows of Figures 8, 9, and 10. We see that the salient
features for the prediction of the poisoning images using the
defended model are much different from those of the poi-
soned model. Additionally, we observe that the salient fea-
tures tend to shift towards a larger number of highly influen-
tial points after the defense has been applied. We also note
that these poisoning images are incorrectly classified by the
defended model, and in fact are returned to the ground truth
class of the target image. These findings demonstrate how
our defense can transfer to identifying poisoning training
images, and provide further explanation to support the abil-
ity of ReScaler to effectively “un-poison” these models.

C.4. Per-block ReScaler Analysis

In Figure 11, we provide a visualization of learned
ReScaler weights applied to each residual block for var-
ious poisoned ResNet models, and we also investigate the
effect of these weights on the cosine similarity between the
output of each block and the output of the shortcut connec-
tion for each residual block in the poisoned and defended
models. We notice that the magnitude and placement of the
learned ReScaler weights, applied onto both the first and
second convolutions of each residual block, vary dramati-
cally across each poisoned model. In fact, we expand upon
the findings in Section C.2, and observe that the distribution
of these weights tend to depend heavily on the particular tar-
get image of each poisoned model, rather than the target or
poison class. We also observe that for some residual blocks,
the ReScaler weights for either the first or second convo-
lutional layer are learned, rather than both.

After the defense has been applied onto the poisoned
model, we notice that for blocks where ReScaler weights
for both the first and second convolutions are applied, the
similarity between the block output and the residual output
tends to increase. This suggests that ReScaler weights
help downweight these convolutional transformations in fa-
vor of those propagated through the residual skip connec-
tions. We also observe that the cosine similarity between
these representations is generally higher in deeper residual
blocks and much lower for the first blocks of each residual
layer, suggesting that deeper blocks tend to propagate repre-
sentations much more through skip connections. Addition-
ally, as discussed in Section 3.1, we note that strictly apply-
ing ReScaler weights onto residual blocks with higher
cosine similarities tends to yield a much higher benign val-
idation accuracy for the defended model.



Figure 8. Saliency maps of target and poisoning images for a ResNet-34 model in the FC attack setting with ✏ = 0.3. We consider a target
image with ground truth class ”ship” and poison class of ”truck”. More influential features for a particular prediction are colored dark
green, and similarly less influential features are lighter shades of green. In the first row, we see that the poisoned model considers a small
number highly influential features when making the prediction into the ”truck” class. We also see that after applying ReScaler, the
prediction for the target image is sent back into the ”ship” class, and that the influential features for this prediction more closely resemble
that of the base model. In the bottom 3 rows, we randomly sample poisoning images from the ”truck” class, and see that the the number
of salient features tends to increase after the defense has been applied. We also see that the defense sends these poisoning images, with
ground truth ”truck”, into to the ”ship” class.

D. Limitations and Social Impact.

Efficient defense strategy against poisoning and back-
door attacks is urgently needed especially for larger DNNs,
which are more likely to scrape enormous data for training.
As for the limitations of ReScaler, we will consider com-

bining attack detection and test-time adaptation to reduce
the required gradient step updates in the future. In addition,
if more information of the training and test distributions are
available, such test-time adaptations can be designed more
effectively as well.



Figure 9. Saliency maps of target and poisoning images for a ResNet-34 model in the FC attack setting with ✏ = 0.3. We consider a target
image with ground truth class ”deer” and poison class of ”frog”. More influential features for a particular prediction are colored dark green,
and similarly less influential features are lighter shades of green. In the first row, we see that the poisoned model considers a small number
highly influential features when making the prediction into the ”frog” class. We also see that after applying ReScaler, the prediction for
the target image is sent back into the ”deer” class, and that the influential features for this prediction more closely resemble that of the base
model. In the bottom 3 rows, we randomly sample poisoning images from the ”frog” class, and see that the the number of salient features
tends to increase after the defense has been applied. We also see that the defense sends these poisoning images, with ground truth ”frog”,
into to the ”deer” class.



Figure 10. Saliency maps of target and poisoning images for a ResNet-34 model in the FC attack setting with ✏ = 0.3. We consider a target
image with ground truth class ”frog” and poison class of ”ship”. More influential features for a particular prediction are colored dark green,
and similarly less influential features are lighter shades of green. In the first row, we see that the poisoned model considers a small number
highly influential features when making the prediction into the ”ship” class. We also see that after applying ReScaler, the prediction for
the target image is sent back into the ”frog” class, and that the influential features for this prediction more closely resemble that of the base
model. In the bottom 3 rows, we randomly sample poisoning images from the ”ship” class, and see that the the number of salient features
tends to increase after the defense has been applied. We also see that the defense sends these poisoning images, with ground truth ”ship”,
into to the ”frog” class.



Figure 11. Effect of ReScaler on the cosine similarity between block and shortcut output. We randomly sample 6 ReScaler weights
and successfully defended ResNet-34 models in the FC attack setting, and plot each one in the figures above. Each ReScaler is learned
with an ✏ bound of 0.3, and the learned weights are displayed using a stacked bar plot to represent the scalar multiples for both the first and
second convolutional layers (ie. ”Conv1 Scalar” and ”Conv2 Scalar” respectively). We also plot the cosine similarity between the output
of each residual block f(z) and the output of its skip connection z. Higher cosine similarities imply that the residual block propagates
the input representation largely through its skip connection. We see that the defended model generally has higher cosine similarities than
the poisoned model. We also observe that the first blocks of each residual layer (i.e., indices 0, 3, 7, and 13) tend to have much lower
similarities than deeper blocks in the layer.
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