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Abstract

Neural networks show a lack of robustness un-
der adverse conditions, such as dealing with new
datasets/distributions and adversarial perturbations. Some
works in the literature, based on experiments with Resnet
models trained on Imagenet, elect possible culprits such as
the vulnerability to high frequency disturbances and depen-
dence on non-robust features. Contrastive Language-Image
Pre-training (CLIP) has been proposed as a new learning
procedure which has improved robustness to new distribu-
tions but low robustness to adversarial examples. There-
fore, CLIP presents an ideal opportunity for measuring how
robust features and frequency sensitivity are associated with
robustness to data shift. In this sense, we measure the vul-
nerability of CLIP model to high frequency perturbations,
and perform image generation and inpainting tasks for as-
sessment of robust features. In the performed experiments,
the CLIP model is shown to be more robust to higher fre-
quency perturbations and less robust to lower frequency
perturbations, indicating a higher dependence on features
with lower frequency. Finally, the images generated by
CLIP were of low quality, indicating a lack of robust fea-
tures.

1. Introduction
Deep Neural Networks achieve excellent classification

results (over 90% accuracy in the Imagenet [15] dataset),
even surpassing humans. However, these learning mod-
els do not perform well on new datasets and distributions,
showing a considerable drop in performance [13].

Some works existing in literature have shown that these
learning models are not robust in another adverse condition:
the addition of specific perturbations (adversarial exam-
ples) [5]. Although these adversarial examples are mostly
imperceptible by humans, they lead the models to make er-
rors with high confidence score. Explaining how these mod-
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els can surpass humans in some conditions and be so vul-
nerable in others is still an open research question.

An explanation for the existence of adversarial examples
is that models learn non-robust features, i.e., information
that is predictive but affected by small variations [7]. Mod-
els that are robust to adversarial attacks, on the other hand,
rely on robust features, which are more aligned with human
perception. Due to this alignment, robust models can be
used for image synthesis tasks such as inpainting [12].

Yin et al. [14] have analyzed the robustness of Resnet
models to different perturbations in terms of frequencies.
The experiments showed that models which are robust to
adversarial examples rely more on low-frequency informa-
tion, and are more vulnerable to low-frequency perturba-
tions such as contrast changes. Natural distribution shift
such as the change of datasets was not studied.

These works presented interesting hypotheses, however
the experiments were carried out using models based on
Resnet [6], trained on the Imagenet [11] dataset. Therefore,
it is not possible to know whether their findings hold for the
general case of deep learning models trained on different
ways.

Recently, the CLIP learning procedure (Contrastive
Language-Image Pre-training) [10] has been proposed to
achieve better robustness to natural distribution shifts. A
CLIP model (ViT-B/32) is able to match the Resnet50
model performance on Imagenet without ever seeing any
training examples, in a zero-shot fashion. This model has
a non-convolutional archicteture, relying instead on Trans-
formers [9], and is trained on a dataset of 400 million image
and text pairs, 400 times more examples than Imagenet [11].
It is also trained with a contrastive training objective, em-
ploying a text model in order to find the matching text and
image pairs.

Due to its differences from previous models and its su-
perior robustness to distribution shift, this CLIP model is
the most suitable for verifying how the existing hypotheses
for model robustness hold up in this case. Geirhos et al. [4]
showed that CLIP is closer to human behavior in various as-
pects, including having less texture bias. Therefore, in this
paper, we want to understand what it has changed in terms



of frequency vulnerability and feature robustness.

2. Experimental Methodology
In this section, we performed the experiments using

CLIP ViT-B/32 as a zero-shot classifier. It received the im-
ages as usual and text prompts in the format “a photo of a
class”, for each possible class of the dataset. For the Im-
agenet100 dataset, in which each class corresponds to var-
ious names, we selected only the first given name. This
procedure matches Resnet50 accuracy.

2.1. Frequency sensitivity

This experiment measures the accuracy of the model
for perturbations of different frequencies. We build the
“Fourier heat map” described in [14].

The Fourier basis vector (i, j) is the image Ui,j with
norm 1 such that the discrete Fourier transform of the im-
age, DFT (Ui,j), has the element (i, j) different from 0 and
all other elements equal to 0 [1]. For each image X of the
validation set and each Fourier basis vector (i, j), we ob-
tain a perturbed version X̃i,j of the image for that specific
frequency vector. This is described on the Equation 1, in
which r is randomly chosen as −1 or 1 and v is the norm of
the perturbation. As in [14], we used v = 4.0 for CIFAR10
and v = 15.7 for Imagenet.

X̃i,j = X + rvUi,j (1)

We then measure the accuracy obtained by the model
averaged over the images perturbed with this Fourier ba-
sis vector (i, j), which corresponds to the point (i, j) of our
graph, centered on the origin. By obtaining the accuracy
for the perturbation of all Fourier basis vectors, we can ob-
serve how the model behaves for perturbations of the whole
frequency spectrum.

We performed this experiment on the test set of the CI-
FAR10 dataset [8], consisting of 10, 000 images with di-
mensions of 32 × 32 divided in 10 categories, and on the
Imagenet100 validation set, consisting of a subset of the
Imagenet dataset composed of 100 randomly selected cate-
gories 1. The images have dimensions of 224×224, with 50
examples per category. For the Imagenet experiments, we
build a heatmap of size 63 × 63, discarding the higher fre-
quencies. This is done to replicate the heatmaps produced
in the original paper [14] and better observe the frequen-
cies used by the models. Experiments were built upon an
existing implementation 2.

2.2. Robust Features

This experiment is qualitative, and aims to verify visu-
ally the quality of the features learned by the model. We fol-

1kaggle.com/ambityga/imagenet100/metadata
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low the experimental methodology for inpainting and image
generation described in [12]. Experiments were built upon
the official implementation 3

For image generation, first we obtain the mean and stan-
dard deviation of the pixels of the images of the class of
interest y. Then, we sample pixels assuming a normal dis-
tribution with the observed mean and deviation. Now, we
apply projected gradient descent (PGD) in order to maxi-
mize the probability assigned by the model to the modified
image x′ while keeping the norm of the perturbation as less
than ϵ = 40.

The Equation 2 shows the minimization objective, in
which L is the Cross Entropy loss and x0 is the image sam-
pled by the class distribution Gy . C refers to the classifica-
tion model, which takes an image as input and outputs class
probabilities.

x = argmin
x′

s.t.∥x′−x0∥2≤ε

L (C(x′), y) , x0 ∼ Gy (2)

For the inpainting experiment, we randomly assign a region
of the image of size 60 × 60, and substitute it by the mean
of the pixels of the region, over each channel. Now, we
apply PGD in order to maximize the probability assigned
by the model while minimizing the pixels altered outside
the region and keeping the norm of the perturbation as less
than ϵ = 21.6.

Equation 3 shows the minimization objective, in which
λ is a constant, m is the mask matrix which is equal to 1
on the affected region and 0 elsewhere. ⊙ corresponds to
element-wise multiplication. Other symbols have the same
meaning as in Equation 2. In our experiments, λ = 10.

xI = argmin
x′

s.t.∥x′−x0∥2≤ε

L (C(x′), y) + λ ∥(x− x′)⊙ (1−m)∥2

(3)

3. Results and Discussion
This section presents the experiments performed in this

paper and discusses the achieved results.

3.1. Frequency sensitivity

On both CIFAR10 and Imagenet100 datasets, CLIP ViT-
B/32 displayed a different behavior from what was previ-
ously observed in the Resnet50 model. We found that CLIP
is less robust than the Resnet50 to perturbations in the low-
frequency domain, and more robust to perturbations in the
highest frequencies. This can mean that CLIP relies more
on low-frequency information, when compared to Resnet
models [14].

In Figure 1, we can see the error rates of both models for
the CIFAR10 dataset. We can see that the Resnet isn’t af-
fected by the lowest frequency perturbations, shown in the

3github.com/MadryLab/robustness_applications
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blue circle in the center. However, it is affected by pertur-
bations of the highest frequencies, shown by the red on the
extremities. CLIP, on the other hand, shows higher vulner-
ability on the lowest frequencies and less vulnerability on
the highest frequencies.

Figure 1. Error rates of the CLIP ViT-B/32 (left) and Resnet50
(right) models for perturbations over the frequency spectrum on
the CIFAR10 dataset.

Figure 2 displays the error rates on Imagenet100, in
which we can see more clearly the low frequency bias of
CLIP model. CLIP model maintains high error rates in the
lowest frequencies up to a point, which then decreases for
higher frequencies. The Resnet50, on the other hand, shows
low error for the lowest frequencies (displayed on a blue
circle in the center) and high error on the other frequency
regions, including close to the extremities – the highest con-
sidered frequencies.

Figure 2. Error rates of the CLIP ViT-B/32 (left) and Resnet50
(right) models for perturbations of various frequencies on the Im-
agenet100 dataset. The images are cropped with 63 × 63 size,
centered at the lowest frequency on the Fourier domain.

3.2. Robust features

In the inpainting experiment, the robust model described
in [12] was capable of finding meaningful reconstructions.
The images generated with the robust model were semanti-
cally similar to the images before corruption, and were per-
ceptually plausible to humans even in the case of mistakes.

The CLIP model, however, does not reconstruct the cor-
rupted images. As showcased in Fig. 3, CLIP model barely
changes the corrupted patches. The alterations are limited

to almost imperceptible squiggles. To the model, however,
these alterations are highly accurate and even capable of
changing a wrong classification to the correct class. The in-
painting loss (3), which is based on the probability assigned
by the model for each image, decreased from 3.8 to 2e-4.

Figure 3. Inpainting task, performed using the CLIP ViT-B/32
model.

The image generation experiment is illustrated on Fig. 4,
and obtained similar results. The images generated by the
robust models in [12], while not realistic, showcased per-
ceptually relevant features such as feathers, eyes, fur and
noses. The images generated by CLIP model, on the other
hand, do not display such features. Any similarity to the
original class is due to the pixel sampling process, with
the final result looking like incomprehensible noise. To the
model, however, these images have high likelihood of per-
taining to the correct class. The generation loss (2), based
on the probability assigned by the model, decreased from
3.5 on the raw sampled pixels to 3e-5 on the final images.

4. Discussion
In the first experiment, we observed differences between

the Fourier heatmap of a Resnet and CLIP models. We ob-
served that in relation to the Resnet model, the CLIP model
has lower robustness to low frequency perturbations and
higher robustness to high frequency perturbations. This can
mean that this CLIP model depends on lower frequencies
than the Resnet model, and as so is more affected by pertur-
bations in these frequencies [14].

This indicates that robustness to natural distribution
shifts might be associated to dependency on lower fre-
quency information and higher robustness in high frequency
domains. Since the CLIP model is robust to high fre-
quency perturbations and is still vulnerable to adversar-
ial attacks [2, 3], this is also further evidence that adver-
sarial attacks are not exclusively a high frequency phe-



Figure 4. Images generated using the CLIP ViT-B/32 model.

nomenon [14].
In the second experiment, we did not find evidence of

robust features. This indicates that robust features are not a
requirement for robustness to natural distribution shift, and
may be exclusively related to adversarial robustness.

5. Conclusion
We replicated experiments for the CLIP ViT-B/32 model,

observing how behaviors related to different aspects of ro-
bustness look like for this model, which obtains record ro-
bustness for dataset shift [10]. We observed that the fre-
quency vulnerability of this CLIP model differs from Resnet
models trained in Imagenet, being biased toward lower fre-
quencies. We also observed that it does not possess robust
features and human-aligned gradients, leading to the gener-
ation of images which fool the model but aren’t perceptually
plausible for humans.

Future works will aim at expanding these experiments
to other models that exhibit robust behavior, such as other
versions of CLIP models, in order to understand if low fre-
quency bias and lack of robust features are general trends.
Another interesting avenue is to perform an ablation study
of CLIP models, observing the frequency vulnerabilities
and robustness of the ablated models. Namely, investigat-
ing the impacts of the contrastive procedure, training data
amount and distribution, and transformer architecture.
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