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Abstract

Visual counterfactual explanations (VCEs) are an impor-
tant tool to understand decisions of image classifiers as they
show under which changes of the image the decision of the
classifier would change. Their generation in image space
is challenging and requires robust models due to the prob-
lem of adversarial examples. Existing techniques to gener-
ate VCEs in image space suffer from spurious changes in
the background. Our novel perturbation model for VCEs
together with its efficient optimization via our novel Auto-
Frank-Wolfe scheme yields sparse VCEs which lead to sub-
tle changes specific for the target class. Moreover, we show
that VCEs can be used to detect undesired behavior of Im-
ageNet classifiers due to spurious features in the dataset.

1. Introduction

Counterfactual explanations (CEs) introduced in [13] is a
form of instance-specific explanations. Current approaches
to generate CEs for classifier decisions try to answer the
question: “What is the minimal change δ of the input x
so that the perturbed input x + δ is classified as the de-
sired target class with sufficiently high confidence and is
realistic?”. From the developer’s perspective, CEs are in-
teresting for debugging as they allow to detect spurious fea-
tures which the classifier has picked up. In [12], with an

extensive overview on the related literature, five criteria for
CEs are formulated: i) validity: the changed input x + δ
should have the desired target class, ii) actionability: the
change δ should be possible to be realized by the human, iii)
sparsity: the change δ should be sparse so that the change
is interpretable for humans, iv) realism: the changed in-
put x + δ should lie close to the data manifold, v) causal-
ity: CEs should maintain causal relations between features.
Note that generating CEs for images, visual counterfactual
explanations (VCEs), is very similar to that of generating
adversarial examples [9, 11].

We make the following contributions: i) we show that the
l2-metric used for the generation of VCEs in [9, 11] leads
to changes all over the image (see Fig. 1) which are unre-
lated to the object, especially for ImageNet models; ii) we
propose sparse VCEs based on the lp-metric for p = 1.5.
Since an efficient projection onto l1.5-balls is not available,
we develop a novel Auto-Frank-Wolfe (AFW) optimization
scheme with an adaptive step-size for the generation of l1.5-
VCEs. iii) we illustrate that VCEs can detect spurious fea-
tures in ImageNet classifiers, e.g., a spurious feature “wa-
termark” in the class granny smith (Sec. 4), showing their
usefulness as a “debugging tool” for ML classifiers.

2. Visual Counterfactual Explanations (VCEs)

We assume in the paper that the classifier, f : Rd → RK ,
outputs for every input x a probability distribution p̂f (y|x)
(y ∈ {1, . . . ,K}) over the classes. The lp-distance on Rd is

Original AFW, l1.5 APGD, l2
cougar: 0.42 →cheetah: 0.99 →cheetah: 0.99

Figure 1. VCEs together with difference maps for the change “cougar −→ cheetah” for an adversarially robust ImageNet model [5,7]. Our
novel l1.5-VCEs yield more sparse changes which are mainly focused on the object compared to the previously considered l2-VCEs [9,11].



Orig. BiT-M [1] RST-S [15] RATIO [9] GU [10] GU+FT [5] PAT [2] HenC [3]
car → truck pi:0.01, pe:1.00 pi:0.51, pe:1.00 pi:0.78, pe:1.00 pi:0.44, pe:1.00 pi:0.83, pe:1.00 pi:0.57, pe:0.99 pi:0.04, pe:1.00

Figure 2. CIFAR10: l2-VCEs of radius ϵ = 2.5 of different classifiers for the change “car → truck” We denote by pi resp. pe the
confidence in the target class for the original image and the generated VCE. All generated VCEs are valid as high confidence in the target
class is achieved but only adversarially robust models, see Tab. 1, show class-specific changes.

defined as: ∥x− y∥p =
(∑d

i=1 |xi − yi|p
) 1

p . We generate
VCEs by solving

argmax
x∈[0,1]d∩B(x0,ϵ)

log p̂f (k|x), (1)

where B(x0, ϵ) = {x ∈ Rd | d(x, x0) ≤ ϵ}. The con-
straint x ∈ [0, 1]d is necessary to generate valid images.
The choice of the distance metric is crucial for the quality of
the VCEs (see Sec. 2.2). The parameter ϵ can be interpreted
as “perturbation budget” with respect to the chosen metric.
We solve it with adversarial attacks, that is either APGD [4]
or our novel Frank-Wolfe based method AFW (details be-
low). For both we use 5 random restarts of 75 iterations. For
the quantitative evaluation of the image quality of VCEs we
use FID scores by generating 10, 000 VCEs from the test
set for the in-distribution (ID) evaluation, where the target
class is the second most likely class according to an ensem-
ble of all classifiers (see Fig. 2). An evaluation using FID
scores on the ID test set only is in our setting problematic,
as methods with no (or minimal) change would get the best
FID score. Thus, we also generate 10, 000 VCEs from an
out-of-distribution (OD) dataset (the first 10k of 80M Tiny
Images respectively ImagetNet-A and ImageNet-O) where
the target label corresponds to the decision of the ensem-
ble. In our experience from the qualitative inspection of the
images, the average of FID scores on ID and OD images
reflects best the realism and quality of the VCEs.

2.1. What kind of (adversarial) robustness is re-
quired for VCEs?

While previous work [9, 11] has shown that l2-
adversarially robust models lead to realistic VCEs, there has
been no study so far about what kind of adversarial robust-
ness in terms of the employed threat model is needed nor
if more robust models also have better generative proper-
ties. For this purpose, we qualitatively compare different
CIFAR-10 classifiers in Fig. 2 and quantitatively in Tab. 1.
GU+FT stands for fine-tuning the GU model [5] to get
multiple-norm-robust. From Fig. 2 one observes that the
two non-robust models BiT-M and HenC do not produce
any meaningful counterfactuals. Surprisingly, the RST-s
model has some adversarial robustness but its l2-VCEs do

Table 1. CIFAR-10: Evaluation of (robust) classifiers for standard
accuracy, l1-, l1.5- and l2-robust accuracy (RA) evaluated at ϵ1 =
12, ϵ1.5 = 1.5, and ϵ2 = 0.5 respectively (first 1k test points).
Further, FID scores for l1-, l1.5-, and l2-VCEs at ϵ1 = 20, ϵ1.5 =
6, ϵ2 = 2.5 for in-and out-of-distribution inputs and their average
are shown. For all classifiers except RATIO l1.5-VCEs attain the
best average FID score.

BiT-M RST-s RATIO GU GU+FT PAT HenC
Acc. 97.4 87.9 94.0 94.7 90.8 82.4 95.8
l1-RA 0.0 36.5 34.3 33.4 58.0 32.9 0.0
l1.5-RA 0.0 70.4 75.4 76.8 76.7 59.2 0.3
l2-RA 0.0 71.4 79.9 81.7 79.2 62.4 0.1

FID scores for l1-VCE
ID 25.1 26.0 24.4 31.1 10.2 29.1 22.7
OD 79.5 72.6 57.8 71.4 52.7 72.2 79.5
Avg. 52.3 49.8 41.1 51.3 31.5 50.6 51.1

FID scores for l1.5-VCE
ID 12.2 8.5 11.7 12.3 9.2 14.4 18.8
OD 62.7 51.6 30.4 52.5 43.4 51.6 62.4
Avg. 42.5 30.1 19.5 32.4 26.3 33.0 40.6

FID scores for l2-VCE
ID 55.4 10.3 12.2 15.8 11.9 18.8 37.9
OD 83.9 50.7 26.0 53.9 41.2 49.0 67.2
Avg. 69.7 30.5 19.1 34.9 26.7 33.9 52.6

Table 2. ImageNet: Accuracy and l1.5-, l2-robust accuracy (RA)
at ϵ1.5 = 12.5, ϵ2 = 2 for the l2-adv. robust model from Madry
[8] and Madry [8]+FT, and FID scores for l1, l1.5- and l2-VCEs,
at ϵ1 = 400, ϵ1.5 = 50, ϵ2 = 12, generated on in(ID)- and /out-
distribution(OD) images and their average. The best FID score are
achieved for l1.5-VCEs for the Madry [8]+FT model.

Accuracies FID scores (ID/OD/AVG)
Acc. l2-RA l1.5-RA l1-VCE l1.5-VCE l2-VCE

Madry [8] 57.9 45.7 37.4 13.6/41.6/27.6 8.4/24.3/16.4 8.4/22.8/15.6
[8] +FT 57.5 44.6 40.1 9.6/35.7/22.6 6.9/22.6/14.8 7.9/23.1/15.5

minimal changes to the image, with little class-specific fea-
tures of the target class. Thus the FID score for the ID is
low, but the FID score of the OD is high. Moreover, the
PAT-model, trained for robustness with respect to a percep-
tual distance produces VCEs that show strong artefacts. The



Original l1, ϵ = 20 l1.5, ϵ = 6 l2, ϵ = 2.5 Original l1, ϵ = 400 l1.5, ϵ = 50 l2, ϵ = 12

truck:0.36 cat:0.90 cat:0.99 cat:1.00
tiger beetle:0.85 dung beetle:0.88 dung beetle:0.99 dung beetle:1.00

Figure 3. CIFAR10 (left) and ImageNet (right): lp-VCEs into correct class (original images are misclassified) for the multiple-norm
adversarially robust models GU+FT (CIFAR10) and Madry [8]+FT (ImageNet). l1-VCEs are too sparse and introduce artefacts and l2-
VCEs change the background. Our l1.5-VCEs are sparse and object-related (see difference maps in the second row).

best VCEs are generated by RATIO, GU and GU+FT, which
also have the highest l2-adversarial robustness. Among
them, RATIO and GU+FT produce the most visually re-
alistic VCEs and also have the best FID scores for in- and
out-distribution. In particular, the multiple-norm finetuning
of the GU model seems to significantly boost the genera-
tive properties, both for l2-VCEs and the l1.5-VCEs (see
Sec. 2.2).

2.2. Sparse VCEs via the l1.5-metric

As a compromise between l1 (too sparse) and l2 (non-
sparse), we propose to use the l1.5-metric for the perturba-
tion model in Eq. (1). Figs. 1 and 3 show that the changes
of l1.5-VCEs are sparse and localized on the object. The
FID scores of the l1.5-VCEs (generated with ϵ = 6 for
CIFAR-10 and ϵ = 50 for ImageNet) of all classifiers for
CIFAR-10 can be found in Tab. 1, where again the RATIO
and GU+FT model work best. Both images and FID scores
indicate that l1.5-VCEs have higher realism and sparsity
than l1- and l2-VCEs. The ID FID score of the non-robust
BiT-M model is surprisingly good, but this is an “artefact”
of the optimization reaching maximum confidence in the in-
terior of the l1.5-ball resulting in rather small changes. The
OD FID reveals that the quality of the generated VCEs is,
as expected, low. This shows that the quantitative evalua-
tion of VCEs using FID scores has to be done with great
care. The results for ImageNet for the l2-robust model of
Madry [8] and Madry [8]+FT are in Tab. 2.

3. Auto-Frank-Wolfe for lp-VCEs
For deep models, the optimization problem for lp-VCEs

max
x∈Bp(x0,ϵ)∩[0,1]d

log p̂(y|x), (2)

is non-convex and related to targeted adversarial attacks, for
which AutoPGD (APGD) [4] has been shown to be very

effective. APGD requires projections onto lp-balls which
are available either in closed form for l2 and l∞ or can be
computed efficiently for l1. In other cases, there is no such
projection available. Thus, in order to generate lp-VCEs for
p > 1, we propose an adaptive version of the Frank-Wolfe
(FW) algorithm [6], named Auto-Frank-Wolfe (AFW). FW
has the advantage that it is projection-free and thus allows
to use arbitrary lp norm balls for p > 1 or their intersection
with [0, 1]d which is required for lp-VCEs. At each itera-
tion k, FW maximizes the first-order Taylor expansion at
the iterate xk of the objective in the feasible set, i.e.

sk = argmax
s∈Bp(x0,ϵ)∩[0,1]d

〈
s,∇xk log p̂(y|xk)

〉
, (3)

and the next iterate is the convex combination

xk+1 = (1− γk)xk + γksk. (4)

The choice of the learning rate γk ∈ (0, 1) is crucial: in
the context of adversarial attacks, [6] use a fixed value γ0
for every k, while [14] decrease it as γ0

γ0+k . In both cases
the schedule is agnostic of the total budget of iterations, and
γ0 needs to be tuned, while we choose γk adaptively fol-
lowing [4]. Also, [6, 14] do not consider the image domain
constraints [0, 1]d but rather solve Eq. (3) for lp-ball con-
straints only (which has a closed form solution) and clip it
to [0, 1]d. This is suboptimal, especially when p is close
to 1. The following proposition shows that it is possible to
solve Eq. (3) efficiently in the intersection Bp(x0, ϵ)∩[0, 1]d
for p > 1.

Proposition 3.1 Let w ∈ Rd, x ∈ [0, 1]d, ϵ > 0 and p > 1.
The solution δ∗ of the optimization problem

argmax
δ∈Rd

⟨w, δ⟩ s.th. ∥δ∥p ≤ ϵ, x+ δ ∈ [0, 1]d (5)



Original l1.5, ϵ = 50 l1.5, ϵ = 75 l1.5, ϵ = 100 l1.5, ϵ = 50 l1.5, ϵ = 75 l1.5, ϵ = 100
Gila monster: 0.12 →valley: 0.79 →valley: 0.94 →valley: 0.98 →volcano: 0.91 →volcano: 1.00 →volcano: 1.00

Figure 4. l1.5-VCEs for Madry [8]+FT with varying radii for a misclassified image of class “coral reef” for the target classes: “coral reef”,
“cliff”, “valley” and “volcano” (same wordnet category “geological formation”).

is given, with the convention sign 0 = 0, by

δ∗i = min

{
γi,

(
|wi|
pµ∗

) 1
p−1

}
signwi, i = 1, . . . , d,

where γi = max{−xi signwi, (1− xi) signwi} and µ∗ >
0, and can be computed in O(d log d) time.

4. Finding spurious features with l1.5-VCEs

Orig. l1.5-VCE, ϵ = 50 Watermark Train set
bell pepper: 0.95 →GS: 0.94 →GS: 0.65 GS

Figure 5. The l1.5-VCE with target class “granny smith” (GS)
for Madry [8]+FT shows that the model has associated a spurious
“text” feature with this class. This is likely due to “iStockphoto”
watermarked images in its training set (right). Adding the water-
mark changes the decision of the classifier to GS.

Failure A, Watermark text as spurious feature for
“granny smith”: We detected this failure when creat-
ing VCEs for the target class “granny smith”. We con-
sistently observed text-like features on the generated l1.5-
VCEs which are not related to this class. In Fig. 5 we illus-
trate the l1.5-VCE for an image from the class “bell pepper”.

Failure B, Cages as spurious feature for “white
shark”: The next failure was detected using l1.5-VCEs for
the shark classes where frequently grid-like structures ap-
pear - but only for VCEs with target class “white shark”.
A typical situation is shown in Fig. 6, where the original
image is from class “coral reef”.
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