
Efficient and Effective Augmentation Strategy for Adversarial Training

Sravanti Addepalli*, Samyak Jain*, R.Venkatesh Babu
Video Analytics Lab, Department of Computational and Data Sciences

Indian Institute of Science, Bangalore

Abstract

The sample complexity of Adversarial training is known
to be significantly higher than standard ERM training. Al-
though complex augmentation techniques have led to large
gains in standard training, they have not been successful
with Adversarial Training. In this work, we propose Diverse
Augmentation based Joint Adversarial Training (DAJAT)
that uses a combination of simple and complex augmenta-
tions with separate batch normalization layers to handle the
conflicting goals of enhancing the diversity of the training
dataset, while being close to the test distribution. We further
introduce a Jensen-Shannon divergence loss to encourage
the joint learning of the diverse augmentations, thereby al-
lowing simple augmentations to guide the learning of com-
plex ones. Lastly, to improve the computational efficiency of
the proposed method, we propose and utilize a two-step de-
fense, Ascending Constraint Adversarial Training (ACAT)
that uses an increasing epsilon schedule and weight-space
smoothing to prevent gradient masking.

1. Introduction
While early Adversarial defenses focused on design-

ing suitable loss functions for training [10, 20], subsequent
works [14] observed that adversarial training has a large
sample complexity, and further gains require the use of ad-
ditional training data that is closely related to the original
data distribution [2, 6]. The large data requirement, which
is impractical to assume, has led to an exploration towards
augmentations based on Generative Adversarial Networks
and Diffusion based models [7, 11]. However, the use of
such generative models incurs an additional training cost,
and suffers from limited diversity, specifically in low-data
regimes and in datasets with high resolution images.

While standard Empirical Risk Minimization (ERM)
based training also benefits from the use of additional data,
the most practical and efficient approach for augmenting the
training dataset has been the use of a series of random trans-
formations such as Random Crop, Random Rotation, Color
Jitter, contrast, sharpness and brightness adjustments [4].

*Equal contribution

These augmentations can change the images significantly in
input space while belonging to the same class as the origi-
nal image. However, prior works [5, 13, 18] have surpris-
ingly found that such complex augmentations that cause
large changes in the input distribution cannot help adver-
sarial training. Thus, the commonly used augmentations in
adversarial training are the simple transformations, padding
followed by random crop, and horizontal flip [5, 13].

In this work, we show that it is indeed possible to utilize
complex augmentations effectively in Adversarial training
as well, by jointly training on simple and complex data aug-
mentations using separate batch-normalization layers for
each kind of augmentation. While complex augmentations
increase the data diversity resulting in better generalization,
simple augmentations ensure that the model specializes on
the training data distribution as well, leading to direct gains
at inference time. We further minimize the Jensen-Shannon
divergence between the softmax outputs of various aug-
mentations to enable the simple augmentations to guide the
learning of complex ones. In order to improve the computa-
tional efficiency of the proposed method, we use two attack
steps (instead of 10 steps) during training, while progres-
sively increasing the magnitude of perturbations and per-
forming smoothing in weight space to improve the stability
of training. Our contributions are listed below:

• We propose an efficient two-step defense, Ascending
Constraint Adversarial Training (ACAT) with a lin-
early increasing ε schedule, cosine learning rate and
weight-space smoothing to prevent gradient masking.

• We propose Diverse Augmentation based Joint Adver-
sarial Training (DAJAT) that effectively combines the
benefits of simple and complex augmentations to ob-
tain significant gains in performance.

2. Ascending Constraint Adversarial Training
Prior works [15] have shown that training convergence

at large ℓ∞ norm bounds can be improved by linearly in-
creasing the perturbation radius ε as training progresses. In-
spired by this, we propose Ascending Constraint Adversar-
ial Training (ACAT) that utilizes an increasing ε schedule
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Figure 1. Comparison of the proposed 2-step defense ACAT
against TRADES-AWP [19] 2-step baseline on the CIFAR-10
with ResNet-18 architecture. ACAT has significantly better per-
formance and stability even at large training ε values. Robust Ac-
curacy is reported against GAMA attack [16] with ε = 8/255

alongside a cosine learning rate schedule with TRADES-
AWP [19] loss formulation for improving the stability and
convergence of two-step adversarial training. We use a co-
sine learning rate schedule that decays monotonically over
the training epochs, since at large training ε, lower learn-
ing rate could further stabilize training. As shown in Fig.1,
the performance and stability of the proposed 2-step de-
fense ACAT are significantly better when compared to the
TRADES-AWP 2-step baseline, at the same computational
cost, specifically at larger perturbations bounds of 12/255
and 16/255. The proposed defense maintains a good clean
accuracy at all the training ε values considered, and has al-
most 0 difference between best and last epochs.

3. Diverse Augmentation based Joint Adver-
sarial Training (DAJAT)

The use of augmentations in training can be viewed as
a problem of domain generalization, where performance on
the source distribution or augmented dataset is crucial to-
wards improving the performance on the target distribution
or test set [1]. Since adversarial training is inherently chal-
lenging, for limited model capacity it is difficult to obtain
good performance on the training data that is transformed
using complex augmentations. Moreover, the large distribu-
tion shift between augmented data and test data, specifically
with respect to low-level statistics, results in poor general-
ization of robust accuracy to the test set. Specifically, since
adversarial attacks perturb images in pixel space, and there
is a large difference between the distributions of augmented
and test data in input space, it is likely that unless this differ-
ence is accounted for, complex augmentations cannot im-
prove the performance of adversarial training. This trend
has also been observed empirically by Rebuffi et al. [12],
based on which they conclude that the augmentations de-
signed for robustness need to preserve low-level features.

To mitigate these challenges, we propose the combined
use of simple and complex augmentations during training
so that the model can benefit from the diversity introduced
by complex augmentations, while also specializing on the
original data distribution that is similar to the simple aug-
mentations. We propose to use separate batch normalization

layers for simple and complex augmentations, so as to offset
the shift in distribution between the two kinds of augmenta-
tions. We additionally minimize the Jensen-Shannon diver-
gence between the softmax outputs of different augmenta-
tions, so as to allow the simple augmentations to guide the
learning of complex ones.

DAJAT Algorithm: Firstly, the TRADES loss [20] is
computed on each of the augmentations of every image x.
As shown in the equation below, this loss is a combination
of cross-entropy loss on the natural image x and the KL
divergence between the softmax predictions of the natural
image x and the adversarially perturbed image x̃. The KL
divergence term is weighted by a factor β that controls the
overall robustness-accuracy trade-off.

LT(θ, x, y) = LCE(fθ(x), y)+β max
x̃∈A(x)

KL(fθ(x)||fθ(x̃))

Different from TRADES Adversarial training, we com-
pute x̃ using two attack steps with a step-size of ε. As
discussed in Section-2, we use a combination of a linearly
increasing schedule of ε alongside a cosine learning rate
schedule in order to improve the stability and performance
of adversarial training. We additionally use model weight-
averaging to improve generalization of the network, as is
common in literature [9].

The overall DAJAT loss is a combination of the
TRADES 2-step loss on each of the augmentations, xbase

and xauto(t) along with an adversarial weight perturbation
step [19] on the loss corresponding to the base augmenta-
tions alone, to improve training efficiency. For every batch
normalization layer, two sets of running statistics and affine
parameters are maintained and used for simple and complex
augmentations respectively. The computation of the Adver-
sarial Weight Perturbation model θ̃ within the constraint set
M(θ) [19] is shown below:

θ̃ = argmax
θ̃∈M(θ)

1
N

N∑
i=1

LT(θ̃, xi,base, yi)

The overall DAJAT loss is shown below:

min
θ̃

1
N

N∑
i=1

{
LT(θ̃, xi,base, yi) +

T∑
t=1

LT(θ̃, xi,auto(t), yi)

+JSD(fθ̃(xi,base), fθ̃(xi,auto(1)), . . . , fθ̃(xi,auto(T))
}

While in our main algorithm we use AutoAugment [4], that
uses Proximal Policy Optimization to find the set of policies
that can yield optimal performance on a given dataset for
standard training, we find that the proposed approach works
well with other augmentations as well. The role of the base
augmentations is primarily to learn the batch normalization
layers that would be used during inference time, and also
to provide better supervision for the training of complex
augmentations using the JS divergence term. The role of
the complex augmentations is to enhance the diversity of
the training dataset. Therefore we use a single base aug-



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
BatchNorm Layers

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
Si

m
ila

rit
y

gamma
beta
mean
var

Figure 2. Cosine Similarity of the two sets of Batch Normal-
ization layer statistics for a WideResNet-34-10 model trained
on CIFAR-10 using the proposed DAJAT defense (Base, 2*AA).
Batch normalization layers corresponding to the Base augmenta-
tions (Pad+Crop,H-Flip) are compared with those of AutoAug-
ment. Parameters of initial layer (Layer-3) channels are diverse,
while those of deeper layers (Layer-25) are similar.

Table 1. Performance of the proposed defenses ACAT and DAJAT
when compared to state-of-the-art defenses on CIFAR-10 dataset.
Robust evaluations are done on GAMA [16] and AutoAttack [3]

CIFAR-10, ResNet-18 CIFAR-10, WideResNet-34

Steps Clean GAMA AutoAttack Train time/
epoch (sec) Clean GAMA AutoAttack

NuAT2-WA 2 82.21 50.97 50.75 109 86.32 55.08 54.76
ACAT, Ours (Base, 2step) 2 82.41 50.00 49.80 95 86.71 55.58 55.36

PGD-AT 10 81.12 49.08 48.75 182 86.07 52.70 52.19
TRADES-AWP 10 80.47 50.06 49.87 228 85.19 55.87 55.69
TRADES-AWP (200 epochs) 10 81.99 51.65 51.45 228 85.36 56.35 56.17
TRADES-AWP-WA 10 80.41 49.89 49.67 228 85.10 56.07 55.87
DAJAT, Ours (Base, AA) 2 + 2 85.60 51.27 51.06 160 87.87 56.97 56.68
DAJAT, Ours (Base, 2*AA) 2 + 4 85.99 51.71 51.48 219 88.90 57.22 56.96
DAJAT, Ours (Base, 3*AA) 2 + 6 86.67 51.81 51.56 280 88.64 57.34 57.05

mentation and multiple complex augmentations. The gains
in performance saturate with the addition of more com-
plex augmentations, and therefore the use of a single base
augmentation and two complex augmentations achieves the
best performance-accuracy trade-off. We note from Table-
1 that in this setting, the computational complexity of the
proposed method is on par with the TRADES-AWP defense
which is the current state-of-the-art approach, while achiev-
ing considerable performance gains.

Split Batch Normalization Layers for Different Aug-
mentations: The proposed defense DAJAT uses separate
batch normalization layers for simple and complex augmen-
tations as discussed above. A Batch Normalization (BN)
layer is implemented as follows on a given feature map
g(xi) of the input image xi: ĝ(xi) =

g(xi)−µ
σ · γ + β

Here, µ and σ denote the mean and standard deviation of the
current mini-batch during training. During inference, these
are set to the running mean and variance computed during
training. γ and β are parameters of the network that are
trained. In the proposed approach we maintain two sets of
batch normalization statistics µ and σ, and two sets of affine
parameters, β and γ for every batch normalization layer.

We plot the cosine similarity between the batch normal-
ization vectors corresponding to the base augmentations and
autoaugment of every layer in Fig.2. While the mean and
variance of the batch normalization have a high similarity
across all layers, we note significant differences in the γ

and β values, specifically in the initial layers. This shows
that the difference in low-level statistics between the two
distributions of images are being offset effectively by incor-
porating separate batch normalization layers. The network
learns more similar parameters in deeper layers since the
feature representations of different types of augmentations
are expected to be more aligned in these layers.

4. Experiments and Results
We compare the proposed approach against several state-

of-the-art defenses in Tables-1 and 2 on CIFAR-10, CIFAR-
100 and ImageNette [8]. We integrate model weight averag-
ing with the TRADES-AWP baseline (termed as TRADES-
AWP-WA) as well for a fair comparison.

Firstly, we compare the performance of the proposed
2-step defense ACAT with the existing state-of-the-art 2-
step defense NuAT-WA [17] in the first partition of Table-1.
While we achieve similar performance on ResNet-18, we
obtain a marginal boost in both clean and robust accuracy on
WideResNet-34 architecture. We note that our proposed de-
fense ACAT can be integrated with the Nuclear Norm train-
ing objective as well to obtain improved results. The per-
formance of the proposed ACAT defense is superior when
compared to the multi-step training method PGD-AT [13]
as well. When compared to the TRADES-AWP 10-step de-
fense [19, 20], we obtain improved clean accuracy with a
slight drop in robust accuracy at half the computational cost.
On the CIFAR-100 dataset, we obtain substantial gains in
both clean and robust accuracy when compared to the 10-
step baselines.

We present three variants of the proposed defense DA-
JAT, by using one, two and three AutoAugment based
augmentations for every image. We denote them as DA-
JAT(Base, AA), DAJAT(Base, 2*AA) and DAJAT(Base,
3*AA) respectively. Using a single AutoAugment based
augmentaion (Base, AA), we obtain improved clean and
robust accuracy when compared to most of the baselines
considered across all datasets and models. By increasing
the number of AutoAugment based transformations to 2,
we observe consistent gains in robust and clean accuracy
in all cases. In this setting, the computational complexity of
the proposed approach matches with that of TRADES-AWP
[19] as shown in Table-1. With the setting (Base,3*AA), we
obtain marginal improvements in performance.

Overall, using the (Base, 2*AA) approach, which has
comparable time complexity as the TRADES-AWP 10-step
defense, we obtain large gains ranging from 3.8% to 7%
on clean accuracy and around 1.8% higher robust accuracy
against AutoAttack [3] across most settings. On the Ima-
genette dataset [8] we obtain 5.48% higher clean accuracy
and 5.42% higher robust accuracy, showing that augmenta-
tion strategies work best when the amount of training data
is less when compared to the complexity of the task.



Table 2. Performance (%) on CIFAR-100 and ImageNette [8] datasets against GAMA attack [16] and AutoAttack [3]

CIFAR-100, ResNet-18 CIFAR-100, WideResNet-34 IN-10, ResNet-18
No. of Steps Clean GAMA AutoAttack Clean GAMA AutoAttack Clean GAMA AutoAttack

TRADES-AWP 10 58.81 25.51 25.30 62.41 29.70 29.54 82.73 57.52 57.40
TRADES-AWP-WA 10 59.88 25.81 25.52 62.73 29.92 29.59 82.03 57.04 56.89
ACAT, Ours (Base, 2step) 2 62.05 26.35 26.10 65.75 30.61 30.23 82.34 57.12 56.96
DAJAT, Ours (Base, AA) 2 + 2 65.75 27.58 27.21 67.82 31.65 31.26 85.27 61.50 61.19
DAJAT, Ours (Base, 2*AA) 2 + 4 66.84 27.61 27.32 68.74 31.58 31.30 86.01 62.52 62.31
DAJAT, Ours (Base, 3*AA) 2 + 6 66.96 27.90 27.62 70.35 31.15 30.89 86.92 62.14 61.89

5. Conclusions
Contrary to prior knowledge, we show that it is possi-

ble to use common augmentation strategies that modify the
low-level statistics of images, in adversarial training as well.
We propose a novel defense Diverse Augmentation based
Joint Adversarial Training (DAJAT) that uses a combination
of simple and complex augmentations with separate batch
normalization layers, in order to benefit from complex aug-
mentations, while also being trained on a distribution that is
close to the test set. The use of JS divergence term between
network predictions of different augmentations enables the
joint learning across various augmentations. We improve
the efficiency of the proposed defense by utilizing the pro-
posed Ascending Constraint Adversarial Training (ACAT)
that improves the stability and performance of TRADES 2-
step adversarial training significantly by using a linearly in-
creasing ε schedule along with a cosine learning rate sched-
ule and weight-space smoothing. We believe this work can
open up further possibilities towards finding better data aug-
mentations for adversarial training.
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