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Abstract

Machine learning models as a service(MLaaS) are often
susceptible to model stealing attacks. While existing works
demonstrate near-perfect performance using softmax pre-
dictions of the classification network, most of the APIs allow
access to only the top-1 labels. In this work, we show that it
is indeed possible to steal Machine Learning models by ac-
cessing only top-1 predictions (Hard Label setting), without
access to model gradients (Black-Box setting) and even the
training dataset (Data-Free setting) within a low query bud-
get. We propose a novel GAN-based framework1 that trains
the student and generator in tandem to steal the model ef-
fectively while utilizing gradients of the clone network as a
proxy to the victim’s gradients. We propose to overcome the
large query costs associated with a typical Data-Free set-
ting by utilizing publicly available (potentially unrelated)
datasets as a weak image prior. We additionally show that
even in the absence of such data, it is possible to achieve
state-of-the-art results within a low query budget using syn-
thetically crafted samples. We are the first to show the scal-
ability of Model Stealing on a 100 class dataset.

1. Introduction
Deep learning based systems have progressed leaps and

bounds over the past few years. Organizations often provide
pretrained machine learning models as a service (MLaaS)
where the end user is allowed to query the model and get
access to its predictions via APIs for use in various appli-
cations. However, exposing the predictions of the models
through queries makes the model susceptible to model steal-
ing attacks, which attempt to clone the victim model with-
out access to its gradients, in a black-box setting. Protect-
ing the privacy of an ML model is of paramount importance
as organizations invest significant resources on cutting edge
research and also on gathering and labelling large amounts
of training data [6]. In addition, recent works [13,15,17,22]
have shown that an adversary could train a substitute model
via model stealing and use it further for crafting adversarial
examples [5] in a black-box setting, which poses a serious

1Project Page: https://sites.google.com/view/dfms-hl

Figure 1. Model Stealing Attack and its vulnerabilities

threat when the model is deployed in security critical ap-
plications. A stolen model could also compromise the pri-
vacy of users by leaking confidential data through a mem-
bership inference attack [14] or via model inversion [20,21].
Fig.1 showcases some of the possible malicious outcomes
of Model Stealing. In order to prevent model stealing at-
tacks, some defenses attempt to perturb the softmax pre-
dictions of the model, while preserving the top-1 predic-
tion [9]. In this work we consider the problem of model
stealing in a more practical and challenging hard label set-
ting, where only the top-1 prediction of the model is ac-
cessible, and is thus effective even in the presence of such
defenses. In a practical scenario, the adversary would not
have access to the training data, and hence we consider the
problem of Data-Free Model Stealing (DFMS) in this work.
In such a data-free scenario, the attacker could use publicly
available related datasets [12, 13], or synthetically gener-
ated samples [16] to query the model. While the use of
publicly available datasets assumes access to related data,
the data-free generative approach suffers from a large query
budget, as the synthetic data can be far from the true training
data distribution. In this work we overcome both challenges
by utilizing the available data that may be potentially unre-
lated to the original training dataset, as a weak image prior.
This enables the generation of representative samples under
a low query budget.

While Data-Free Knowledge Distillation works [1,3,10,
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11, 19] achieve near perfect accuracy, the additional chal-
lenges in a Model Stealing framework stem from the restric-
tion of access to gradients and a hard label setting. There-
fore, we consider the problem of data-free hard label model
stealing and overcome the challenges by utilizing the clone
model’s gradients as a proxy to the gradients of the Vic-
tim model. This allows us to train the generator alternately
with the clone model by enforcing the generation of a class-
balanced dataset that is also more aligned with the distribu-
tion of the training dataset. We also utilize an adversarial
loss in a GAN framework [4], by using a small amount of
publicly available data, which we refer to as proxy data [1].
While this could be completely unrelated to the original
training dataset, it still helps in enforcing a weak image
prior in the generated data. This in turn reduces the number
of Victim model queries needed to perform Model Steal-
ing. In fact, we show that it is possible to even use synthetic
samples, such as multiple overlapping shapes with a planar
background, to steal a model in a completely data-free set-
ting. Our method achieves a significant improvement over
ZSDB3KD [18], a zero-shot data-free method in a similar
hard label setting using only synthetic samples.

Key Contributions:
• We propose DFMS-HL, a data-free model stealing

(DFMS) attack in a hard-label (HL) setting to train a
clone model with the help of unrelated proxy data. We
show that DFMS-HL outperforms the existing baseline
ZSDB3KD [18] and results in a significant reduction
of around 500× in the number of queries.

• We demonstrate state-of-the-art results on CIFAR-10
using unrelated proxy samples, such as 40 or 10 classes
from CIFAR-100, or a synthetic dataset.

• We are the first to show noteworthy results of data-free
model stealing on a dataset with a larger number of
classes such as CIFAR-100.

• The soft-label variant (DFMS-SL) achieves a signifi-
cant boost of 3% over the state-of-the-art model steal-
ing attacks MAZE [7] and DFME [16].

2. Proposed Approach
We propose a data-free model stealing approach DFMS-

HL that requires only hard-labels. At first, we train a DC-
GAN by imposing an image prior using synthetic or unre-
lated proxy data. This gives a good initialization for the gen-
erator G. We also train an initial clone model with the proxy
images. Following this, we then begin our procedure of al-
ternately training the clone model and the generator. The
data flow is shown in Fig. 2 wherein the generator G gen-
erates data x = G(z) from a random normal vector z. The
victim model takes input x and generates input, label pairs
(x, ŷ(x)) for each instance in x. Since, the victim model is
black-box, we do not backpropagate the gradients through

Generator 

Victim Model
 

Clone Model 

Discriminator

Clone Model Training

Proxy 
Data

Generator Training

Backward Propagation for 
Generator

Backward Propagation for 
Clone

Forward Propagation

Figure 2. Architecture of DFMS-HL: Generator G generates data
x with a proxy image prior. The clone model C is trained using the
labels from the victim model V with cross-entropy loss LCE . The
generator G is trained with the adversarial loss Ladv along with
the class-diversity loss Lclass div .The generator and clone model
are trained alternately in every iteration.

it. The labelled input pairs are used to train the clone model
with the cross-entropy loss as follows:

LC = E
z∼N (0,I)

[LCE(ŷ(x), C(x))] , x = G(z) (1)

where ŷ(x) = argmax
i

Vi(x) is the class label for the max-

imum probability class and C(x) is the output logits from
the clone model. The generator is trained with the adver-
sarial loss [4] and a unique diversity loss as shown below:

Ladv,real = E
x∼pdata(x)

[logD(x)] , (2)

Ladv,fake = E
z∼N (0,I)

[log(1−D(G(z))] (3)

Across a batch of N samples, we take the expected con-
fidence value over the batch as αj for every class j and
obtain the entropy over K classes. Hence, the generator
model learns to generate samples from different classes by
minimizing the diversity loss formulation as below,

Lclass div =

K∑
j=0

αj logαj , αj =
1

N

N∑
i=1

softmax(C(xi))j

(4)
The equations below describe the generator and discrimi-

nator losses, that are minimized alternately for training.
LG = Ladv,fake + λdivLclass div (5)

LD = Ladv,real + Ladv,fake (6)

3. Experiments
Comparison with Knowledge distillation methods:

We perform experiments on CIFAR-10 as the True dataset
as shown in Table 1 for comparing with existing KD
methods. DeGAN [1] and ZSKD [11] are data-free
knowledge distillation methods with white-box teacher
access. KnockoffNets [12] and Black-Box Ripper [2]
are data-free KD methods in a black-box setting. Sim-
ilar to the experimental setting of prior works [1, 2],
we use 40 unrelated classes from CIFAR-100 dataset
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Table 1. Comparison of DFMS-HL with state-of-the-art KD meth-
ods(Top) and ZSDB3KD (Bottom)

Method
Hard
Label

Black
Box

Data
Free

Victim
Acc

Data
Free

CIFAR-100
(40C)

CIFAR-100
(10C)

Victim Accuracy = 82.5%

ZSKD × × ✓ 82.50 69.50 - -
DeGAN × × ✓ 82.50 - 76.30 72.60
KnockoffNets × ✓ ✓ 82.50 - 65.70 46.60
Black-Box Ripper × ✓ ✓ 82.50 - 76.50 77.90
DFMS-HL (Ours) ✓ ✓ ✓ 82.52 65.70 76.02 71.36

Victim Accuracy ∼ 80%

ZSDB3KD ✓ ✓ ✓ 79.30 59.46 - -
DFMS-HL (Ours) ✓ ✓ ✓ 80.18 67.03 74.27 70.57

Table 2. Performance of DFMS-
HL on CIFAR-100

Method
Proxy
Data

Victim
Acc

Clone
Acc

DeGAN CIFAR-10 78.52 75.62
DFMS-HL CIFAR-10 78.52 72.83

DFMS-HL Synthetic 78.52 43.56

as the proxy dataset for
CIFAR-10 model stealing.
We also show results on
10 random classes from
these 40 classes. We
achieve comparable results

with the data-free KD methods despite having more restric-
tions on access to the victim model. Apart from proxy data,
we also show results on synthetically crafted data. We gen-
erate a synthetic dataset (shown in Fig 3) of 50k samples
using skimage python library2 by drawing shapes of trian-
gle, rectangle, ellipse and circles at random locations on
top of a clear background. These manually crafted im-
ages are converted to grey-scale and then used as proxy
data. From Table 1, it can be observed that our approach
not only outperforms ZSDB3KD by a large margin, but
also achieves a comparable accuracy with respect to the De-
GAN and Black-Box Ripper for the CIFAR-100 40 classes
proxy data. We also use a significantly lower query budget
of 8M as compared to ZSDB3KD which requires 4000M
queries. We also perform experiments on CIFAR-100 (Ta-
ble 2) with CIFAR-10 [1, 2] and synthetic data as proxy
datasets. DFMS-HL reaches a comparably close accuracy
of 72.83% using CIFAR-10 as the proxy without any access
to the victim model’s gradients and only using hard labels

Comparison with Model Stealing methods. We com-
pare our approach with the state-of-the-art data-free Model
Stealing approaches [8, 16] in Table 3. We obtain an accu-
racy of 84.51% by merely using synthetic samples in a com-
pletely data-free hard-label setting. We use a lower query
budget of 8M, as compared to that of DFME and MAZE
that require 20M queries for CIFAR-10. We further extend
our attack to the soft-label black-box scenario (denoted as
DFMS-SL in Table 3) where the softmax predictions of the
victim model are available. We get a boost of almost 3% us-
ing synthetic data and CIFAR-100 10 classes with the same
query budget of 20M.

2https://scikit- image.org/docs/stable/auto_
examples/edges/plot_random_shapes.html

Table 3. Comparison of DFMS-HL with data-free model stealing
methods MAZE and DFME (Top) and with ZSDB3KD (Bottom)

Method
Hard
Label

Black
Box

Data
Free

Victim
Acc

Data
Free

CIFAR-100
(40C)

CIFAR-100
(10C)

Victim Accuracy ∼ 95.5%

MAZE × ✓ ✓ 95.50 45.60 - -
DFME × ✓ ✓ 95.50 88.10 - -
DFMS-HL (Ours) ✓ ✓ ✓ 95.59 84.51 92.06 85.53
DFMS-SL (Ours) × ✓ ✓ 95.59 91.24 93.96 90.88

Victim Accuracy ∼ 93.7%

ZSDB3KD ✓ ✓ ✓ 93.65 50.18 - -
DFMS-HL (Ours) ✓ ✓ ✓ 93.83 85.92 90.51 83.37

Small Overlapping Shapes Large Overlapping Shapes

Figure 3. Synthetic images: Equal share of large(right) and
small(left) overlapping shapes on planar background used to train
the clone model.

Figure 4. Query Ablation (Left): Sensitivity Plot of Clone model
accuracy to number of queries. A significant boost of 6% in the
clone model accuracy is evidenced after using class-diversity loss.
Class-diversity Loss (Right): Clone model accuracy increases
with increase in diversity coefficient λdiv .

4. Ablation Experiments
Effect of Query Budget: We analyse the impact of the

query budget on the clone model accuracy. Our approach
achieves a good accuracy with a query budget of 7.6 million
on synthetic data for AlexNet as victim model and AlexNet-
half as clone model. From Fig.4, we observe that even with
a small query budget of 1.26M, our method performs well
and it almost saturates within 8M. We report the saturat-
ing accuracies in Table 1 and 3. We use a query budget of
10M for the CIFAR-100 experiments (Table 2) and 8M for
CIFAR-10 experiments (Tables1 and 3). The class-diversity
loss has a huge impact with a significant boost of 6% in the
clone accuracy for synthetic data using 7.6M queries.

Effect of Class Diversity Loss: We gradually increase
the loss coefficient from 0 to 1000 for synthetic data as
proxy with CIFAR-10 as the true dataset as shown in Fig. 4
and measure the clone model accuracy. We run the ablations
till 7.6M queries and observe that increasing the coefficient
λdiv of class-diversity loss improves the clone model accu-
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racy. We reported our final results with a λdiv value of 500
for CIFAR-10 experiments in Table 1 and 3 and set λdiv as
100 for CIFAR-100 experiments in Table 2.

5. Conclusions
In this paper, we propose an effective model stealing at-

tack in a practical setting of having access to only hard-
labels of a black-box victim model. Extensive experiments
show that our method DFMS-HL performs better than the
state-of-the art model stealing method at a 500x lower query
budget. We further show that our attack is effective in a
completely data-free setting using a synthetic dataset. We
demonstrate the scalability of the proposed model stealing
attack to CIFAR-100 as well with a low query budget, which
has not been attempted in prior works
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