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Abstract

As clean ImageNet accuracy nears its ceiling, the re-
search community is increasingly more concerned about ro-
bust accuracy under distributional shifts. While a variety of
methods have been proposed to robustify neural networks,
these techniques often target models trained on ImageNet
classification. At the same time, it is a common practice to
use ImageNet pretrained backbones for downstream tasks
such as object detection, semantic segmentation, and image
classification from different domains. This raises a ques-
tion: Can these robust image classifiers transfer robustness
to downstream tasks? For object detection and semantic
segmentation, we find that a vanilla Swin Transformer, a
variant of Vision Transformer tailored for dense prediction
tasks, transfers robustness better than Convolutional Neu-
ral Networks that are trained to be robust to the corrupted
version of ImageNet. For CIFARIO classification, we find
that models that are robustified for ImageNet do not re-
tain robustness when fully fine-tuned. These findings sug-
gest that current robustification techniques tend to empha-
size ImageNet evaluations. Moreover, network architecture
is a strong source of robustness when we consider transfer
learning.

1. Introduction

ImageNet A newly proposed vision architecture, includ-
ing recent Vision Transformer [ 1], is first tested against Im-
ageNet to demonstrate a good performance before it gains
popularity within the community. While accuracy on Im-
ageNet has been considered as a surrogate for measuring
progress in machine vision systems, the research commu-
nity is now aware of the lack of robustness of vision models
towards small input perturbations. [10] first reported that
imperceptible adversarial perturbation can easily fool im-
age classifiers. Recent studies show that even simpler, more
natural noises such as blur, contrast change, and snow can
significantly degrade the performance of models [4]. A
typical strategy to increase robustness is data augmenta-
tion, where a vision model is trained with additional data,
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which are artificially corrupted during training. Examples
include ANT [9], AugMix [5], and DeepAug [3]. How-
ever, these techniques often focus on improving robust ac-
curacy for ImageNet classification. In fact, there are now a
variety of ImageNet-scale robustness benchmarks, and the
community is striving to improve accuracy on these bench-
marks [3].

Due to the scale of ImageNet, it is a common practice to
use ImageNet pretrained weights for downstream tasks such
as object detection and image segmentation. This practice
of using pretrained ImageNet weights for transfer learning
raises a fundamental question from a robustness perspec-
tive: When we use pretrained weights that are made to be
robust to ImageNet benchmarks, do these models necessar-
ily show robustness to downstream tasks as well?

Scope. While there are various kinds of distributional shifts
and robustness that the vision community studies, we focus
on common corruption robustness in this paper, because we
are interested in robustness transfer from ImageNet classi-
fication to downstream tasks such as object detection and
segmentation. See Section 3.1 for more details about why
we specifically choose common corruptions as a topic of
our study.

2. Background

Ensuring robustness in downstream tasks such as ob-
ject detection and semantic segmentation is equally, if not
more, important than achieving robustness in image classi-
fication. Especially for safety-critical applications such as
self-driving cars, vision systems that are vulnerable to im-
age perturbations can lead to dire consequences. In such
real-world applications, classification is only the first step
of the pipeline, and ensuring robustness through the entire
system of object detection and segmentation needs further
care.

When we consider how to ensure robustness for down-
stream tasks, there are two viable approaches. One is to
transfer robustness effectively from a pretrained, robustified
classifier backbone to each downstream task, which is our
focus of this paper. The other approach is to apply an ex-



Method Noise Blur Digital Weather

Regular 36.09 44.00 17.36 17.59
ANT 21.90 3925 1443 16.22
DeepAug+ 16.39 29.25 12.64 11.27
Swin-T 18.01 38.18 14.66 10.12

Table 1. Accuracy drops across models and noise types are
presented for fixed-feature transfer learning from ImageNet to
COCO Object Detection. Regular represents a regular ImageNet-
pretrained ResNet50, while DeepAug+ and ANT are ResNet50s
that are robustified during ImageNet pretraining. Swin-T is a Swin
Transformer (Tiny), where the model size is similar to ResNet50.

isting robust data augmentation technique during transfer
learning. While applying robustification techniques during
finetuning for downstream tasks is an option, these robust
methods often degrade performance on clean data , or re-
quire more training data to perform on par with models that
are simply trained on clean data [8]. This is especially con-
cerning, since data scarcity is common in downstream tasks
, which is precisely why transfer learning is needed in the
first place. Therefore, rather than entirely resorting to data
augmentation during fine-tuning, it is critical to better un-
derstand robustness transfer to achieve both robustness and
good clean accuracy in downstream tasks.

2.1. Transfer Learning for Dense Prediction Tasks

While image classification only requires a single feature
map typically extracted from the last layer, object detection
and semantic segmentation benefits a lot from multiresolu-
tion feature maps. These feature maps provide richer in-
formation that helps object detection at different scale and
pixel-level semantic prediction. Most object detection and
semantic segmentation systems uses a CNN as their back-
bone and exploit hierarchical feature maps that are extracted
from different blocks of the model.

Motivated by the success of Transformer architecture in
NLP, Vision Transformer (ViT) [1] was proposed. While
the original ViT excels at image classification, it is not
amenable to dense prediction tasks such as object detec-
tion and semantic segmentation. This is because the orig-
inal ViT processes tokens at fixed scale, producing single
low-resolution feature maps. Recently, a variant of ViT
called Swin Transformer was proposed to address this lim-
itation [7]. Swin Transformer uses a hierarchical architec-
ture to build multiresolution feature maps, while achieving
linear-time complexity with respect to the image size. Be-
cause of this, Swin Transformer achieves the state-of-the-art
performance in both object detection and semantic segmen-
tation. In this work, we use Swin Transformer for our ViT
architecture.

Method Noise Blur  Digital Weather

Regular 4898 2942 14.01 25.68
ANT 17.78 2341 10.67 25.62
DeepAug+ 20.07 1947 10.70 19.12
Swin-T 13.57 2350 13.48 14.28

Table 2. Accuracy drops across models and noise types are
presented for fixed-feature transfer learning from ImageNet to
ADEI10K Semantic Segmentation.

3. Fixed-Feature Transfer Learning

When we consider transfer learning from image classi-
fiers to object detection or segmentation, we can freeze the
backbone, while only training the head of the detection or
segmentation system. We refer to this approach as fixed-
feature transfer learning. On the other hand, we can use pre-
trained image classifiers as initialization to train object de-
tection or segmentation models, which we call full-network
transfer learning.

Fixed-feature transfer learning from ImageNet to ob-
ject detection and semantic segmentation is not a common
practice because full-network transfer learning generally
performs better. However, for robustness transfer, fixed-
feature transfer learning is an important setup to consider
because it allows us to directly leverage robustified Ima-
geNet backbones and measure how much robustness the
model carries over to downstream tasks after fine-tuning
only the head of the entire model. Full-network transfer
learning, on the other hand, potentially erases the robust-
ness property of backbones during fine-tuning, which can
confound our analysis of robustness transfer.

From earlier work on robustness of image classifiers, a
vanilla Swin Transformer is known to perform better than
CNNs on ImageNet-C. At the same time, we can robustify
these CNNs by data augmentation, so that they perform well
on ImageNet-C. Should we expect that robustified CNNs
transfer their robustness automatically when we only fine-
tune the head while fixing the backbone? Moreover, which
source of robustness (architecture vs. data augmentation) is
better suited in terms of robustness transfer?

To resolve this question, we prepare two CNNs that are
robustified during ImageNet-1k pretraining using ANT [9]
and DeepAug+AugMix [3] respectively, and a Swin Trans-
former, also pretrained on ImageNet-1k but without apply-
ing any robustification technique. To control for the model
size, we use ResNet50 and Swin-T, where the parameter
counts are 25M and 28M, respectively. For object detection,
we use Mask-RCNN [2] and for semantic segmentation, we
use UperNet [ 1] as the head.
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Figure 1. Robust models vs. mean performance drop under 15 corruption types in full-network fine-tuning. The lower the performance
drop, the more robust models are to these image corruptions. Regular is a vanilla ResNet50. DeepAug+ and ANT refer to ResNet50
models robustified via DeepAug+AugMix and ANT, which are all data augmentation techniques to increase robustness against common
corruptions [3,9]. Swin-T is a vanilla Tiny Swin Transformer, where the parameter counts are similar to ResNet50. If robustness on
ImageNet is transferable to other downstream tasks, we would see a similar pattern of ImageNet-C in object detection and semantic
segmentation as well. However, we see that Swin-T performs much better than DeepAug+, the most robust model against ImageNet-C.
This shows that the Swin Transformer as architecture is a stronger source of robustness transfer than robustification techniques that are
used (e.g. DeepAug, AugMix, or ANT). Moreover, for CIFAR-10, Regular appears to be the most robust model, highlighting the difficulty

of transferring ImageNet robustness effectively.

3.1. Robustness Transfer Benchmark

To measure how well a model transfers robustness from
ImageNet classification to downstream tasks, we have to
prepare the same set of distributional shifts that can be ap-
plied to both classification and downstream tasks. While
there are a variety of ImageNet-related benchmarks to mea-
sure robustness against distributional shifts, most of these
distributional shifts are not adoptable to our setting, because
they are specifically designed for ImageNet classification.
To measure the performance of robustness transfer to down-
stream tasks, we focus on 15 synthetic image corruption
types, grouped into 4 categories: “noise,” “blur,” “weather,”
and “digital,” introduced in ImageNet-C [4]. They mea-
sure corruption robustness of ImageNet classifiers by com-
puting how much the original accuracy drops when these
models are evaluated on corrupted images of the ImageNet
test set. Since these image corruptions are algorithmically
generated, they can be applied to images in both classifi-
cation and downstream tasks such as object detection and
segmentation. Therefore, these image corruptions allow us
to compare the accuracy drop in classification with one in
downstream tasks, which is useful to measure the degree of
robustness transfer across different models.

Formally, we take ImageNet models, fine-tune them for
downstream tasks. We calculate model performance on
the clean test set in downstream tasks, and compute the
performance drop after we apply image corruptions. We
then compare the accuracy drop for classification and down-
stream tasks. We report the mean performance drop across
the 15 image corruptions as our metric. The benchmark per-
formance is computed in terms of mean performance under
corruption: mPC = Nic Zivz”l P., where N, is 15, and
P, is the task-specific performance measure evaluated un-
der corruption c on the test set. We then compute the rel-

ative performance under corruption: rPC = T~ where
Piean 1s the task-specific performance measure evaluated
on the clean test set. We use 1 — r PC as our main metric to
report and refer to this metric as Accuracy Drop or Perfor-
mance Drop depending on the context. rPC' allows us to
compare the degree of robustness transfer from ImageNet
to downstream tasks such as object detection and semantic
segmentation.

Dataset. For object detection, we choose MS-COCO [6]
and use the COCO 2017 validation set as our test split,
following the convention. For semantic segmentation, we
choose ADE20K [12] that consists of 20210 train, 2000
validation images, and 150 semantic classes. We use the
following downstream-task specific performance measures:

Object Detection. We use the COCO-style mAP, which
averages over IoUs between 50% and 95%.

Semantic Segmentation. We use the mean IoU, which in-
dicates the intersection-over-union between the predicted
and ground truth pixels, averaged over all the classes.

Table | and 2 summarize the results for the fixed feature
transfer learning experiment. While ANT and DeepAug+
transfer robustness well across both downstream tasks, we
also notice that for some noise types, Swin-T outperforms
the robust CNNs (e.g. Noise, Weather in Table 2 and
Weather in Table 1.) This suggests that, to our surprise,
a vanilla Swin Transformer has a potential to transfer ro-
bustness better than robust CNNs. In the next section, we
investigate to what extent these phenomena can be observed
in the full-network transfer learning setting.



4. Full-Network Transfer Learning

A more common practice to perform transfer learn-
ing is to use ImageNet pretrained weights as initializa-
tion and fine-tune the entire network for downstream tasks.
Even though it takes more computational resources than the
fixed-feature case, full-network transfer learning generally
performs better.

However, when we take robustness into consideration,
full-network transfer learning can be detrimental, because
gradient updates during fine-tuning can erase robustified
features acquired during ImageNet pretraining. This possi-
bility is especially concerning for robustification techniques
that rely on data augmentation during pretraining such as
DeepAug, AugMix, and ANT. Thus, one may argue that ro-
bustness arising from these data augmentation techniques
might be less effective when we fine-tune the entire net-
work for downstream tasks. On the other hand, robustness
arising from the architecture itself can be more resilient to
full-network fine-tuning, because the robustness property is
not directly encoded into weights, but rather stems from the
topology of architecture. Thus, we do not need to worry
about erasing robustness that arises from architecture during
transfer learning. As we see that a vanilla Swin Transformer
outperforms robustified CNNs for some noise types in the
Section 3, architecture indeed plays some role in transfer-
ring robustness. Therefore, we hypothesize that in the set-
ting of full-network transfer learning, Transformer architec-
tures might be more effective than CNNs that are robustified
via data augmentation.

To resolve this hypothesis, we repeat the same set of ex-
periments as in the Section 3, but now train all weights for
object detection, semantic segmentation, and image clas-
sification. For downstream image classification tasks, we
choose CIFARI10. The results are shown in Figure 1. As
a reference, we also plot the original ImageNet accuracy as
well as the Top-1 Accuracy Drop on ImageNet-C for all Im-
ageNet models we use. We can confirm that the two robust
CNNs (DeepAug+ and ANT) indeed demonstrate higher ro-
bustness than Regular. It is noteworthy that a vanilla Swin-
T shows slightly higher robustness than ANT (represented
as a lower accuracy drop in the blue bar). More surpris-
ingly, Swin-T performs best in object detection and seman-
tic segmentation. This shows that DeepAug+ and ANT are
less successful to transfer their ImageNet-C robustness to
downstream tasks than Swin-T, verifying our hypothesis.
Moreover, when we test robust transfer from ImageNet-C
to CIFARI10, we find that these robust models fail to outper-
form Regular. This shows that robustness from ImageNet
for downstream image classification seems to be harder to
transfer than object detection and semantic segmentation.
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